Computational Contact Mechanics Geometrically Exact Theory for Arbitrary Shaped Bodies /

This book contains a systematical analysis of geometrical situations� leading to� contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. �Each contact pair �is inherited with a special coordinate system based on its geometrical properties such as...

Full description

Bibliographic Details
Main Authors: Konyukhov, Alexander. (Author), Schweizerhof, Karl. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Lecture Notes in Applied and Computational Mechanics, 67
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31531-2
LEADER 04146nam a22005055i 4500
001 14849
003 DE-He213
005 20130727041959.0
007 cr nn 008mamaa
008 120814s2013 gw | s |||| 0|eng d
020 # # |a 9783642315312  |9 978-3-642-31531-2 
024 7 # |a 10.1007/978-3-642-31531-2  |2 doi 
050 # 4 |a TA405-409.3 
050 # 4 |a QA808.2 
072 # 7 |a TG  |2 bicssc 
072 # 7 |a TEC009070  |2 bisacsh 
072 # 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 # |a Konyukhov, Alexander.  |e author. 
245 1 0 |a Computational Contact Mechanics  |b Geometrically Exact Theory for Arbitrary Shaped Bodies /  |c by Alexander Konyukhov, Karl Schweizerhof.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XXII, 446 p. 280 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Applied and Computational Mechanics,  |v 67  |x 1613-7736 ; 
505 0 # |a Differential Geometry of Surfaces and Curves -- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System -- Geometry and Kinematics of Contact -- Weak Formulation of Contact Conditions -- Contact Constraints and Constitutive Equations for Contact Tractions -- Linearization of the Weak Forms Tangent Matrices in a Covariant Form -- Surface-To-Surface Contact Various Aspects for Implementations -- Special Case of Implementation Reduction into 2D Case -- Implementation of Contact Algorithms with High Order FE -- Anisotropic Adhesion-Friction Models Implementation -- Experimental Validations of the Coupled Anistropi -- Various Aspects of Implementation of the Curve-To-Curve Contact Model -- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch. 
520 # # |a This book contains a systematical analysis of geometrical situations� leading to� contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. �Each contact pair �is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system.� The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a� certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others� are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are� then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and� contains the associated� numerical analysis as well as some new analytical results in contact mechanics. 
650 # 0 |a Engineering. 
650 # 0 |a Mechanics. 
650 # 0 |a Mechanics, applied. 
650 # 0 |a Materials. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Mechanics. 
700 1 # |a Schweizerhof, Karl.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642315305 
830 # 0 |a Lecture Notes in Applied and Computational Mechanics,  |v 67  |x 1613-7736 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31531-2 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)