Modeling in Computational Biology and Biomedicine A Multidisciplinary Endeavor /
Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by...
Corporate Author: | |
---|---|
Other Authors: | , |
Format: | Electronic |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Subjects: | |
Online Access: | https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31208-3 |
Table of Contents:
- Foreword by Olivier Faugeras
- Foreword by Jol͡ Janin
- Preface
- Part I Bioinformatics
- 1.Modeling Macro-molecular Complexes: a Journey Across Scales. F.Cazals, T.Dreyfus, and C.H. Robert
- 1.1.Introduction
- 1.2.Modeling Atomic Resolution
- 1.3.Modeling Large Assemblies
- 1.4.Outlook
- 1.5.Online Resources
- References
- 2.Modeling and Analysis of Gene Regulatory Networks. G.Bernot, J-P.Comet, A.Richard, M.Chaves, J-L.Gouz,̌ and F.Dayan
- 2.1.Introduction
- 2.2.Continuous and Hybrid Models of Genetic Regulatory Networks
- 2.3.Discrete Models of GRN
- 2.4.Outlook
- 2.5.Online Resources
- 2.6.Acknowledgments
- References
- Part II Biomedical Signal and Image Analysis
- 3.Noninvasive Cardiac Signal Analysis Using Data Decomposition Techniques. V.Zarzoso, O.Meste, P.Comon, D.G.Latcu, and N.Saoudi
- 3.1.Preliminaries and Motivation
- 3.2.T-Wave Alternans Detection via Principal Component Analysis
- 3.3.Atrial Activity Extraction via Independent Component Analysis
- 3.4.Conclusion and Outlook
- 3.5.Online Resources
- References
- 4.Deconvolution and Denoising for Confocal Microscopy. P.Pankajakshan, G.Engler, L.Blanc-Fřaud, and J.Zerubia
- 4.1.Introduction
- 4.2.Development of the Auxiliary Computational Lens
- 4.3.Outlook
- 4.4.Selected Online Resources
- References
- 5.Statistical Shape Analysis of Surfaces in Medical Images Applied to the Tetralogy of Fallot Heart. K.McLeod, T.Mansi, M.Sermesant, G.Pongiglione, and X.Pennec
- 5.1.Introduction
- 5.2.Statistical Shape Analysis
- 5.3.Shape Analysis of ToF Data
- 5.4.Conclusion
- 5.5.Online Resources
- References
- 6.From Diffusion MRI to Brain Connectomics. A.Ghosh and R.Deriche
- 6.1.Introduction
- 6.2.A Brief History of NMR and MRI
- 6.3.Nuclear Magnetic Resonance and Diffusion
- 6.4.From Diffusion MRI to Tissue Microstructure
- 6.5.Computational Framework for Processing Diffusion MR Images
- 6.6.Tractography: Inferring the Connectivity
- 6.7.Clinical Applications 6.8.Conclusion
- 6.9.Online Resources
- References
- Part III Modeling in neuroscience
- 7.Single-Trial Analysis of Bioelectromagnetic Signals: The Quest for Hidden Information. M.Clerc, T.Papadopoulo, and C.Bňar
- 7.1.Introduction
- 7.2.Data-driven Approaches: Non-linear Dimensionality Reduction
- 7.3.Model-Driven Approaches: Matching Pursuit and its Extensions
- 7.4.Success Stories
- 7.5.Conclusion
- 7.6.Selected Online Resources
- References
- 8 Spike Train Statistics from Empirical Facts to Theory: The Case of the Retina. B.Cessac and A.Palacios
- 8.1.Introduction
- 8.2.Unraveling the Neural Code in the Retina via Spike Train Statistics Analysis
- 8.3.Spike Train Statistics from a Theoretical Perspective
- 8.4.Using Gibbs Distributions to Analysing Spike Trains Statistics
- 8.5.Conclusion
- 8.6.Outlook
- 8.7.Online Resources
- References
- Biology, Medicine and Biophysics
- Mathematics and Computer Science
- Index.