Poisson Structures

Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical a...

Full description

Bibliographic Details
Main Authors: Laurent-Gengoux, Camille. (Author), Pichereau, Anne. (Author), Vanhaecke, Pol. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 347
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31090-4
LEADER 03900nam a22005295i 4500
001 14797
003 DE-He213
005 20130727035203.0
007 cr nn 008mamaa
008 120824s2013 gw | s |||| 0|eng d
020 # # |a 9783642310904  |9 978-3-642-31090-4 
024 7 # |a 10.1007/978-3-642-31090-4  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Laurent-Gengoux, Camille.  |e author. 
245 1 0 |a Poisson Structures  |c by Camille Laurent-Gengoux, Anne Pichereau, Pol Vanhaecke.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XXIV, 461 p. 16 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |v 347  |x 0072-7830 ; 
505 0 # |a Part I Theoretical Background:1.Poisson Structures: Basic Definitions -- 2.Poisson Structures: Basic Constructions -- 3.Multi-Derivations and Kh̃ler Forms -- 4.Poisson (Co)Homology -- 5.Reduction -- Part II Examples:6.Constant Poisson Structures, Regular and Symplectic Manifolds -- 7.Linear Poisson Structures and Lie Algebras -- 8.Higher Degree Poisson Structures -- 9.Poisson Structures in Dimensions Two and Three -- 10.R-Brackets and r-Brackets -- 11.Poisson<U+0013>Lie Groups -- Part III Applications:12.Liouville Integrable Systems -- 13.Deformation Quantization -- A Multilinear Algebra -- B Real and Complex Differential Geometry -- References -- Index -- List of Notations. . 
520 # # |a Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Topological Groups. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Global differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Non-associative Rings and Algebras. 
700 1 # |a Pichereau, Anne.  |e author. 
700 1 # |a Vanhaecke, Pol.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642310898 
830 # 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |v 347  |x 0072-7830 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-31090-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)