Minimum Error Entropy Classification

This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and...

Full description

Bibliographic Details
Main Authors: Marques de S,̀ Joaquim P. (Author), Silva, Lus̕ M.A. (Author), Santos, Jorge M.F. (Author), Alexandre, Lus̕ A. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Studies in Computational Intelligence, 420
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-29029-9
LEADER 02708nam a22004935i 4500
001 14625
003 DE-He213
005 20130726230932.0
007 cr nn 008mamaa
008 120724s2013 gw | s |||| 0|eng d
020 # # |a 9783642290299  |9 978-3-642-29029-9 
024 7 # |a 10.1007/978-3-642-29029-9  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Marques de S,̀ Joaquim P.  |e author. 
245 1 0 |a Minimum Error Entropy Classification  |c by Joaquim P. Marques de S,̀ Lus̕ M.A. Silva, Jorge M.F. Santos, Lus̕ A. Alexandre.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVIII, 262 p. 110 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 420  |x 1860-949X ; 
505 0 # |a Introduction -- Continuous Risk Functionals -- MEE with Continuous Errors -- MEE with Discrete Errors -- EE-Inspired Risks -- Applications. 
520 # # |a This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi<U+0010>layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE<U+0010>like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
700 1 # |a Silva, Lus̕ M.A.  |e author. 
700 1 # |a Santos, Jorge M.F.  |e author. 
700 1 # |a Alexandre, Lus̕ A.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642290282 
830 # 0 |a Studies in Computational Intelligence,  |v 420  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-29029-9 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)