Emerging Paradigms in Machine Learning

This� book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The �multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.� The book is aiming at...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Ramanna, Sheela. (Editor), Jain, Lakhmi C. (Editor), Howlett, Robert J. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Smart Innovation, Systems and Technologies, 13
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-28699-5
LEADER 03100nam a22004695i 4500
001 14605
003 DE-He213
005 20130726224944.0
007 cr nn 008mamaa
008 120730s2013 gw | s |||| 0|eng d
020 # # |a 9783642286995  |9 978-3-642-28699-5 
024 7 # |a 10.1007/978-3-642-28699-5  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Ramanna, Sheela.  |e editor. 
245 1 0 |a Emerging Paradigms in Machine Learning  |c edited by Sheela Ramanna, Lakhmi C Jain, Robert J. Howlett.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XXII, 498 p. 167 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Smart Innovation, Systems and Technologies,  |v 13  |x 2190-3018 ; 
505 0 # |a From the content: Emerging Paradigms in Machine Learning: An Introduction -- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization -- Optimised information abstraction in granular Min/Max clustering -- Mining Incomplete Data A Rough Set Approach -- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation. 
520 # # |a This� book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The �multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.� The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.� Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.� � 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Jain, Lakhmi C.  |e editor. 
700 1 # |a Howlett, Robert J.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642286988 
830 # 0 |a Smart Innovation, Systems and Technologies,  |v 13  |x 2190-3018 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-28699-5 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)