Advances in Intelligent Signal Processing and Data Mining Theory and Applications /

The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carl...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Georgieva, Petia. (Editor), Mihaylova, Lyudmila. (Editor), Jain, Lakhmi C. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Studies in Computational Intelligence, 410
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-28696-4
LEADER 02842nam a22004695i 4500
001 14604
003 DE-He213
005 20130726224947.0
007 cr nn 008mamaa
008 120726s2013 gw | s |||| 0|eng d
020 # # |a 9783642286964  |9 978-3-642-28696-4 
024 7 # |a 10.1007/978-3-642-28696-4  |2 doi 
050 # 4 |a TA1-2040 
072 # 7 |a TBC  |2 bicssc 
072 # 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 # |a Georgieva, Petia.  |e editor. 
245 1 0 |a Advances in Intelligent Signal Processing and Data Mining  |b Theory and Applications /  |c edited by Petia Georgieva, Lyudmila Mihaylova, Lakhmi C Jain.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIV, 354 p. 143 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 410  |x 1860-949X ; 
505 0 # |a From the content: Introduction to Intelligent Signal Processing and Data Mining -- Monte Carlo-Based Bayesian Group Object Tracking and Causal Reasoning -- A Sequential Monte Carlo Method for Multi-Target Tracking with the Intensity Filter -- Sequential Monte Carlo Methods for Localisation inWireless Networks -- A Sequential Monte Carlo Approach for Brain Source Localization. 
520 # # |a The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. � The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms. � 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering, general. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Mihaylova, Lyudmila.  |e editor. 
700 1 # |a Jain, Lakhmi C.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642286957 
830 # 0 |a Studies in Computational Intelligence,  |v 410  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-28696-4 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)