Analyzing Evolutionary Algorithms The Computer Science Perspective /

Evolutionary algorithms is a class of randomized heuristics inspired by natural evolution. They are applied in many different contexts, in particular in optimization, and analysis of such algorithms has seen tremendous advances in recent years. � In this book the author provides an introduction to t...

Full description

Bibliographic Details
Main Author: Jansen, Thomas. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Natural Computing Series,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-17339-4
LEADER 03472nam a22005295i 4500
001 14483
003 DE-He213
005 20130725215314.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 # # |a 9783642173394  |9 978-3-642-17339-4 
024 7 # |a 10.1007/978-3-642-17339-4  |2 doi 
050 # 4 |a QA75.5-76.95 
072 # 7 |a UY  |2 bicssc 
072 # 7 |a UYA  |2 bicssc 
072 # 7 |a COM014000  |2 bisacsh 
072 # 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 # |a Jansen, Thomas.  |e author. 
245 1 0 |a Analyzing Evolutionary Algorithms  |b The Computer Science Perspective /  |c by Thomas Jansen.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 255 p. 19 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Natural Computing Series,  |x 1619-7127 
505 0 # |a Introduction -- Evolutionary Algorithms and Other Randomized Search Heuristics -- Theoretical Perspectives on Evolutionay Algorithms -- General Limits in Black-Box Optimization -- Methods for the Analysis of Evolutionary Algorithms -- Selected Topics in the Analysis of Evolutionary Algorithms -- App. A, Landau Notation -- App. B, Tail Estimations -- App. C, Martingales and Applications. 
520 # # |a Evolutionary algorithms is a class of randomized heuristics inspired by natural evolution. They are applied in many different contexts, in particular in optimization, and analysis of such algorithms has seen tremendous advances in recent years. � In this book the author provides an introduction to the methods used to analyze evolutionary algorithms and other randomized search heuristics. He starts with an algorithmic and modular perspective and gives guidelines for the design of evolutionary algorithms. He then places the approach in the broader research context with a chapter on theoretical perspectives. By adopting a complexity-theoretical perspective, he derives general limitations for black-box optimization, yielding lower bounds on the performance of evolutionary algorithms, and then develops general methods for deriving upper and lower bounds step by step. This main part is followed by a chapter covering practical applications of these methods. � The notational and mathematical basics are covered in an appendix, the results presented are derived in detail, and each chapter ends with detailed comments and pointers to further reading. So the book is a useful reference for both graduate students and researchers engaged with the theoretical analysis of such algorithms. � 
650 # 0 |a Computer science. 
650 # 0 |a Information theory. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a Engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Optimization. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642173387 
830 # 0 |a Natural Computing Series,  |x 1619-7127 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-17339-4 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)