Long-Range Dependence and Sea Level Forecasting

This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-AR...

Full description

Bibliographic Details
Main Authors: Ercan, Ali. (Author), Kavvas, M. Levent. (Author), Abbasov, Rovshan K. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2013.
Series:SpringerBriefs in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01505-7
LEADER 03439nam a22004935i 4500
001 14384
003 DE-He213
005 20130905051600.0
007 cr nn 008mamaa
008 130829s2013 gw | s |||| 0|eng d
020 # # |a 9783319015057  |9 978-3-319-01505-7 
024 7 # |a 10.1007/978-3-319-01505-7  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PD  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Ercan, Ali.  |e author. 
245 1 0 |a Long-Range Dependence and Sea Level Forecasting  |c by Ali Ercan, M. Levent Kavvas, Rovshan K. Abbasov.  |h [electronic resource] / 
264 # 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 # # |a V, 51 p. 21 illus., 6 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 # |a 1. Introduction -- 2. Long-Range Dependence and ARFIMA Models -- 3. Forecasting, Confidence Band Estimation and Updating -- 4.Case Study I: Caspian Sea Level -- 5.Case Study II: Sea Level Change at Peninsular Malaysia and Sabah-Sarawak -- 6. Summary and Conclusions -- 7. References. 
520 # # |a This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution. There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia s Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period. This book�will be useful for engineers and researchers working in the areas of applied statistics, climate change, sea level change, time series analysis, applied earth sciences, and nonlinear dynamics. 
650 # 0 |a Statistics. 
650 # 0 |a Climatic changes. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Climate Change. 
700 1 # |a Kavvas, M. Levent.  |e author. 
700 1 # |a Abbasov, Rovshan K.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319015040 
830 # 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01505-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)