Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces

Aimed toward researchers, postgraduate students, and scientists in linear operator theory and mathematical inequalities, this self-contained monograph focuses on numerical radius inequalities for bounded linear operators on complex Hilbert spaces for the case of one and two operators. Students at th...

Full description

Bibliographic Details
Main Author: Dragomir, Silvestru Sever. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2013.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01448-7
LEADER 03237nam a22004815i 4500
001 14380
003 DE-He213
005 20130919033030.0
007 cr nn 008mamaa
008 130913s2013 gw | s |||| 0|eng d
020 # # |a 9783319014487  |9 978-3-319-01448-7 
024 7 # |a 10.1007/978-3-319-01448-7  |2 doi 
050 # 4 |a QA329-329.9 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 # |a Dragomir, Silvestru Sever.  |e author. 
245 1 0 |a Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces  |c by Silvestru Sever Dragomir.  |h [electronic resource] / 
264 # 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 120 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 # |a 1. Introduction -- 2. Inequalities for One Operator -- 3. Inequalities for Two Operators . 
520 # # |a Aimed toward researchers, postgraduate students, and scientists in linear operator theory and mathematical inequalities, this self-contained monograph focuses on numerical radius inequalities for bounded linear operators on complex Hilbert spaces for the case of one and two operators. Students at the graduate level will learn some essentials that may be useful for reference in courses in functional analysis, operator theory, differential equations, and quantum computation, to name several. Chapter 1 presents fundamental facts about the numerical range and the numerical radius of bounded linear operators in Hilbert spaces. Chapter 2 illustrates recent results obtained concerning numerical radius and norm inequalities for one operator on a complex Hilbert space, as well as some special vector inequalities in inner product spaces due to Buzano, Goldstein, Ryff and Clarke as well as some reverse Schwarz inequalities and Gr<U+00fc>ss type inequalities obtained by the author. Chapter 3 presents recent results regarding the norms and the numerical radii of two bounded linear operators. The techniques shown in this chapter are elementary but elegant and may be accessible to undergraduate students with a working knowledge of operator theory. A number of vector inequalities in inner product spaces as well as inequalities for means of nonnegative real numbers are also employed in this chapter. All the results presented are completely proved and the original references are mentioned. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Operator theory. 
650 # 0 |a Differential Equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319014470 
830 # 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01448-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)