Invariance Entropy for Deterministic Control Systems An Introduction /

This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connec...

Full description

Bibliographic Details
Main Author: Kawan, Christoph. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2013.
Series:Lecture Notes in Mathematics, 2089
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01288-9
LEADER 02984nam a22004815i 4500
001 14371
003 DE-He213
005 20131007042528.0
007 cr nn 008mamaa
008 131001s2013 gw | s |||| 0|eng d
020 # # |a 9783319012889  |9 978-3-319-01288-9 
024 7 # |a 10.1007/978-3-319-01288-9  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Kawan, Christoph.  |e author. 
245 1 0 |a Invariance Entropy for Deterministic Control Systems  |b An Introduction /  |c by Christoph Kawan.  |h [electronic resource] : 
264 # 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 # # |a XXII, 270 p. 2 illus., 1 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 2089  |x 0075-8434 ; 
505 0 # |a Basic Properties of Control Systems -- Introduction to Invariance Entropy -- Linear and Bilinear Systems -- General Estimates -- Controllability, Lyapunov Exponents, and Upper Bounds -- Escape Rates and Lower Bounds -- Examples -- Notation -- Bibliography -- Index. 
520 # # |a This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585 1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems given by differential equations. 
650 # 0 |a Mathematics. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Systems theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Systems Theory, Control. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319012872 
830 # 0 |a Lecture Notes in Mathematics,  |v 2089  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01288-9 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)