Structure of Approximate Solutions of Optimal Control Problems

This title�examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called...

Full description

Bibliographic Details
Main Author: Zaslavski, Alexander J. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2013.
Series:SpringerBriefs in Optimization,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01240-7
LEADER 03082nam a22005295i 4500
001 14366
003 DE-He213
005 20130809133032.0
007 cr nn 008mamaa
008 130804s2013 gw | s |||| 0|eng d
020 # # |a 9783319012407  |9 978-3-319-01240-7 
024 7 # |a 10.1007/978-3-319-01240-7  |2 doi 
050 # 4 |a QA315-316 
050 # 4 |a QA402.3 
050 # 4 |a QA402.5-QA402.6 
072 # 7 |a PBKQ  |2 bicssc 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT005000  |2 bisacsh 
072 # 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 # |a Zaslavski, Alexander J.  |e author. 
245 1 0 |a Structure of Approximate Solutions of Optimal Control Problems  |c by Alexander J. Zaslavski.  |h [electronic resource] / 
264 # 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 # # |a VII, 135 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Optimization,  |x 2190-8354 
505 0 # |a Preface -- 1.Introduction -- 2.Turnpike Properties of Optimal Control Problems -- 3.Infinite Horizon Problems -- 4.Linear Control Systems -- References. �. 
520 # # |a This title�examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called turnpike property of optimal control problems. �The author generalizes the�results�of the turnpike property by considering �a class of optimal control problems which is identified with the corresponding complete metric space of objective functions.�This establishes the turnpike property for any element in a set that is in�a countable intersection�which is open everywhere dense sets in the space of integrands; meaning that the turnpike property holds for most optimal control problems. Mathematicians working in optimal control and the calculus of variations and graduate students will find this book��useful and valuable due to its� presentation of solutions to a number of difficult problems in optimal control��and presentation of new approaches, techniques and methods. 
650 # 0 |a Mathematics. 
650 # 0 |a Systems theory. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Continuous Optimization. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319012391 
830 # 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-01240-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)