Markov's Theorem and 100 Years of the Uniqueness Conjecture A Mathematical Journey from Irrational Numbers to Perfect Matchings /

This book takes the reader on a mathematical journey, from a number-theoretic point of view, to the realm of Markovs theorem and the uniqueness conjecture, gradually unfolding many beautiful connections until everything falls into place in the proof of Markovs theorem.�What makes the Markov theme...

Full description

Bibliographic Details
Main Author: Aigner, Martin. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Heidelberg : Springer International Publishing : Imprint: Springer, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00888-2
LEADER 03216nam a22004575i 4500
001 14335
003 DE-He213
005 20130727081913.0
007 cr nn 008mamaa
008 130718s2013 gw | s |||| 0|eng d
020 # # |a 9783319008882  |9 978-3-319-00888-2 
024 7 # |a 10.1007/978-3-319-00888-2  |2 doi 
050 # 4 |a QA241-247.5 
072 # 7 |a PBH  |2 bicssc 
072 # 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 # |a Aigner, Martin.  |e author. 
245 1 0 |a Markov's Theorem and 100 Years of the Uniqueness Conjecture  |b A Mathematical Journey from Irrational Numbers to Perfect Matchings /  |c by Martin Aigner.  |h [electronic resource] : 
264 # 1 |a Heidelberg :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 257 p. 72 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Approximation of Irrational�Numbers -- Markov's Theorem and the Uniqueness Conjecture -- The Markov Tree -- The Cohn Tree -- The Modular Group SL(2,Z) -- The Free Group F2 -- Christoffel Words -- Sturmian Words -- Proof of Markov's Theorem -- The Uniqueness Conjecture. �. 
520 # # |a This book takes the reader on a mathematical journey, from a number-theoretic point of view, to the realm of Markov s theorem and the uniqueness conjecture, gradually unfolding many beautiful connections until everything falls into place in the proof of Markov s theorem.�What makes the Markov theme so attractive is that it appears in an astounding variety of different fields, from number theory to combinatorics, from classical groups and geometry to the world of graphs and words. On the way, there are also introductory forays into some fascinating topics that do not belong to the standard curriculum, such as Farey fractions, modular and free groups, hyperbolic planes, and algebraic words. The book closes with a discussion of the current state of knowledge about the uniqueness conjecture, which remains an open challenge to this day. All the material should be accessible to upper-level undergraduates with some background in number theory, and anything beyond this level is fully explained in the text. This is not a monograph in the usual sense concentrating on a specific topic. Instead, it narrates in five parts Numbers, Trees, Groups, Words, Finale the story of a discovery in one field and its many manifestations in others, as a tribute to a great mathematical achievement and as an intellectual pleasure, contemplating the marvellous unity of all mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Group theory. 
650 # 0 |a Combinatorics. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Combinatorics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319008875 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00888-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)