Stochastic Processes From Physics to Finance /

This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts a...

Full description

Bibliographic Details
Main Authors: Paul, Wolfgang. (Author), Baschnagel, Jr̲g. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Heidelberg : Springer International Publishing : Imprint: Springer, 2013.
Edition:2nd ed. 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00327-6
LEADER 03155nam a22005175i 4500
001 14244
003 DE-He213
005 20130727080034.0
007 cr nn 008mamaa
008 130710s2013 gw | s |||| 0|eng d
020 # # |a 9783319003276  |9 978-3-319-00327-6 
024 7 # |a 10.1007/978-3-319-00327-6  |2 doi 
050 # 4 |a QC1-999 
072 # 7 |a JHBC  |2 bicssc 
072 # 7 |a PSAF  |2 bicssc 
072 # 7 |a SCI064000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 # |a Paul, Wolfgang.  |e author. 
245 1 0 |a Stochastic Processes  |b From Physics to Finance /  |c by Wolfgang Paul, Jr̲g Baschnagel.  |h [electronic resource] : 
250 # # |a 2nd ed. 2013. 
264 # 1 |a Heidelberg :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIII, 280 p. 43 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a A First Glimpse of Stochastic Processes -- A Brief Survey of the Mathematics of Probability Theory -- Diffusion Processes -- Beyond the Central Limit Theorem: Lv̌y Distributions -- Modeling the Financial Market -- Stable Distributions Revisited -- Hyperspherical Polar Coordinates -- The Weierstrass Random Walk Revisited -- The Exponentially Truncated Lv̌y Flight -- Put<U+0013>Call Parity -- Geometric Brownian Motion. 
520 # # |a This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given. 
650 # 0 |a Physics. 
650 # 0 |a Finance. 
650 # 0 |a Mathematical physics. 
650 # 0 |a Economics, Mathematical. 
650 1 4 |a Physics. 
650 2 4 |a Socio- and Econophysics, Population and Evolutionary Models. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Game Theory/Mathematical Methods. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 # |a Baschnagel, Jr̲g.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319003269 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00327-6 
912 # # |a ZDB-2-PHA 
950 # # |a Physics and Astronomy (Springer-11651)