Inorganic Nanoarchitectures by Organic Self-Assembly

Macromolecular self-assembly - driven by weak, non-covalent, intermolecular forces - is a common principle of structure formation in natural and synthetic organic materials. The variability in material arrangement on the nanometre length scale makes this an ideal way of matching� the structure-funct...

Full description

Bibliographic Details
Main Author: Guldin, Stefan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Heidelberg : Springer International Publishing : Imprint: Springer, 2013.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00312-2
Description
Summary:Macromolecular self-assembly - driven by weak, non-covalent, intermolecular forces - is a common principle of structure formation in natural and synthetic organic materials. The variability in material arrangement on the nanometre length scale makes this an ideal way of matching� the structure-function demands of photonic and optoelectronic devices. However, suitable soft matter systems typically lack the appropriate photoactivity, conductivity or chemically stability. This thesis explores the implementation of soft matter design principles for inorganic thin film nanoarchitectures. Sacrificial block copolymers and colloids are employed as structure-directing agents for the co-assembly of solution-based inorganic materials, such as TiO_2 and SiO_2.� Novel fabrication and characterization methods allow unprecedented control of material formation on the 10  500 nm length scale, allowing the design of material architectures with interesting photonic and optoelectronic properties.
Physical Description:XVII, 165 p. 66 illus., 50 illus. in color. online resource.
ISBN:9783319003122
ISSN:2190-5053