Hypoelliptic Laplacian and Bott<U+0013>Chern Cohomology A Theorem of Riemann<U+0013>Roch<U+0013>Grothendieck in Complex Geometry /

The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann<U+0013>Roch<U+0013>Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott<U+0013>Chern cohomology, which is a refinement...

Full description

Bibliographic Details
Main Author: Bismut, Jean-Michel. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Heidelberg : Springer International Publishing : Imprint: Birkhũser, 2013.
Series:Progress in Mathematics ; 305
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00128-9
LEADER 03945nam a22004815i 4500
001 14208
003 DE-He213
005 20130727075618.0
007 cr nn 008mamaa
008 130524s2013 gw | s |||| 0|eng d
020 # # |a 9783319001289  |9 978-3-319-00128-9 
024 7 # |a 10.1007/978-3-319-00128-9  |2 doi 
050 # 4 |a QA612.33 
072 # 7 |a PBPD  |2 bicssc 
072 # 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.66  |2 23 
100 1 # |a Bismut, Jean-Michel.  |e author. 
245 1 0 |a Hypoelliptic Laplacian and Bott<U+0013>Chern Cohomology  |b A Theorem of Riemann<U+0013>Roch<U+0013>Grothendieck in Complex Geometry /  |c by Jean-Michel Bismut.  |h [electronic resource] : 
264 # 1 |a Heidelberg :  |b Springer International Publishing :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a XV, 203 p. 1 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematics ;  |v 305 
505 0 # |a Introduction -- 1 The Riemannian adiabatic limit -- 2 The holomorphic adiabatic limit -- 3 The elliptic superconnections -- 4 The elliptic superconnection forms -- 5 The elliptic superconnections forms -- 6 The hypoelliptic superconnections -- 7 The hypoelliptic superconnection forms -- 8 The hypoelliptic superconnection forms of vector bundles -- 9 The hypoelliptic superconnection forms -- 10 The exotic superconnection forms of a vector bundle -- 11 Exotic superconnections and Riemann<U+0013>Roch<U+0013>Grothendieck -- Bibliography -- Subject Index -- Index of Notation. . 
520 # # |a The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann<U+0013>Roch<U+0013>Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott<U+0013>Chern cohomology, which is a refinement for complex manifolds of de Rham cohomology. When the manifolds are Kh̃ler, our main result is known. A proof can be given using the elliptic Hodge theory of the fibres, its deformation via Quillen's superconnections, and a version in families of the 'fantastic cancellations' of McKean<U+0013>Singer in local index theory. In the general case, this approach breaks down because the cancellations do not occur any more. One tool used in the book is a deformation of the Hodge theory of the fibres to a hypoelliptic Hodge theory, in such a way that the relevant cohomological information is preserved, and 'fantastic cancellations' do occur for the deformation. The deformed hypoelliptic Laplacian acts on the total space of the relative tangent bundle of the fibres. While the original hypoelliptic Laplacian discovered by the author can be described in terms of the harmonic oscillator along the tangent bundle and of the geodesic flow, here, the harmonic oscillator has to be replaced by a quartic oscillator. Another idea developed in the book is that while classical elliptic Hodge theory is based on the Hermitian product on forms, the hypoelliptic theory involves a Hermitian pairing which is a mild modification of intersection pairing. Probabilistic considerations play an important role, either as a motivation of some constructions, or in the proofs themselves. 
650 # 0 |a Mathematics. 
650 # 0 |a K-theory. 
650 # 0 |a Global analysis. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a K-Theory. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319001272 
830 # 0 |a Progress in Mathematics ;  |v 305 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00128-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)