Control and Optimization with PDE Constraints

Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Bredies, Kristian. (Editor), Clason, Christian. (Editor), Kunisch, Karl. (Editor), Winckel, Gregory. (Editor)
Format: Electronic
Language:English
Published: Basel : Springer Basel : Imprint: Birkhũser, 2013.
Series:International Series of Numerical Mathematics ; 164
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0631-2
LEADER 04447nam a22006015i 4500
001 14169
003 DE-He213
005 20130727075550.0
007 cr nn 008mamaa
008 130611s2013 sz | s |||| 0|eng d
020 # # |a 9783034806312  |9 978-3-0348-0631-2 
024 7 # |a 10.1007/978-3-0348-0631-2  |2 doi 
050 # 4 |a QA315-316 
050 # 4 |a QA402.3 
050 # 4 |a QA402.5-QA402.6 
072 # 7 |a PBKQ  |2 bicssc 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT005000  |2 bisacsh 
072 # 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 # |a Bredies, Kristian.  |e editor. 
245 1 0 |a Control and Optimization with PDE Constraints  |c edited by Kristian Bredies, Christian Clason, Karl Kunisch, Gregory Winckel.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a X, 215 p. 43 illus., 29 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a International Series of Numerical Mathematics ;  |v 164 
505 0 # |a Preface -- An Adaptive POD Approximation Method for the Control of Advection-Diffusion Equations (A. Alla and M. Falcone) -- Generalized Sensitivity Analysis for Delay Differential Equations (H. T. Banks, D. Robbins and K. L. Sutton) -- Regularity and Unique Existence of Solution to Linear Diffusion Equation with Multiple Time-Fractional Derivatives (S. Beckers and M. Yamamoto) -- Nonsmooth Optimization Method and Sparsity (K. Ito) -- Parareal in Time Intermediate Targets Methods for Optimal Control Problem (Y. Maday, M -- K. Riahi and J. Solomon) -- Hamilton<U+0013>Jacobi<U+0013>Bellman Equations on Multi-Domains (Z. Rao and H. Zidani) -- Gradient Computation for Model Calibration with Pointwise Observations (E. W. Sachs and M. Schu) -- Numerical Analysis of POD A-Posteriori Error Estimation for Optimal Control (A. Studinger and S. Volkwein) -- Cubature on C1 Space (G. Turinici) -- A Globalized Newton Method for the Optimal Control of Fermionic Systems (G. von Winckel) -- A Priori Error Estimates for Optimal Control Problems with Constraints on the Gradient of the State on Nonsmooth Polygonal Domains (W. Wollner). 
520 # # |a Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of PDEs and of PDE-constrained optimization, covering the full spectrum from analysis to numerical realization and applications. Leading scientists address current topics such as non-smooth optimization, Hamilton<U+0013>Jacobi<U+0013>Bellmann equations, issues in optimization and control of stochastic partial differential equations, reduced-order models and domain decomposition, discretization error estimates for optimal control problems, and control of quantum-dynamical systems. These contributions originate from the <U+001c>International Workshop on Control and Optimization of PDEs in Mariatrost in October 2011. This book is an excellent resource for students and researchers in control or optimization of differential equations. Readers interested in theory or in numerical algorithms will find this book equally useful. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Computer science  |x Mathematics. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Numerical Analysis. 
700 1 # |a Clason, Christian.  |e editor. 
700 1 # |a Kunisch, Karl.  |e editor. 
700 1 # |a Winckel, Gregory.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034806305 
830 # 0 |a International Series of Numerical Mathematics ;  |v 164 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0631-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)