Quaternion and Clifford Fourier Transforms and Wavelets

Quaternion and Clifford Fourier and wavelet transformations generalize the classical theory to higher dimensions and are becoming increasingly important in diverse areas of mathematics, physics, computer science and engineering. This edited volume presents the state of the art in these hypercomplex...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Hitzer, Eckhard. (Editor), Sangwine, Stephen J. (Editor)
Format: Electronic
Language:English
Published: Basel : Springer Basel : Imprint: Birkhũser, 2013.
Series:Trends in Mathematics
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0603-9
LEADER 04622nam a22005415i 4500
001 14164
003 DE-He213
005 20130727074848.0
007 cr nn 008mamaa
008 130625s2013 sz | s |||| 0|eng d
020 # # |a 9783034806039  |9 978-3-0348-0603-9 
024 7 # |a 10.1007/978-3-0348-0603-9  |2 doi 
050 # 4 |a QA241-247.5 
072 # 7 |a PBH  |2 bicssc 
072 # 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 # |a Hitzer, Eckhard.  |e editor. 
245 1 0 |a Quaternion and Clifford Fourier Transforms and Wavelets  |c edited by Eckhard Hitzer, Stephen J. Sangwine.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a XXVII, 338 p. 76 illus., 44 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Trends in Mathematics 
505 0 # |a Preface.- History of Quaternion and Clifford-Fourier Transforms and Wavelets -- Part I: Quaternions.- 1 Quaternion Fourier Transform: Re-tooling Image and Signal Processing Analysis.- 2 The Orthogonal 2D Planes Split of Quaternions and Steerable Quaternion Fourier Transformations.- 3 Quaternionic Spectral Analysis of Non-Stationary Improper Complex Signals.- 4 Quaternionic Local Phase for Low-level Image Processing Using Atomic Functions.- 5 Bochner<U+0019>s Theorems in the Framework of Quaternion Analysis.- 6 Bochner-Minlos Theorem and Quaternion Fourier Transform -- Part II: Clifford Algebra.- 7 Square Roots of -1 in Real Clifford Algebras.- 8 A General Geometric Fourier Transform.- 9 Clifford-Fourier Transform and Spinor Representation of Images -- 10 Analytic Video (2D+t) Signals Using Clifford-Fourier Transforms in Multiquaternion Grassmann-Hamilton-Clifford Algebras -- 11 Generalized Analytic Signals in Image Processing: Comparison, Theory and Applications -- 12 Color Extension of Monogenic Wavelets with Geometric Algebra: Application to Color Image Denoising -- 13 Seeing the Invisible and Maxwell<U+0019>s Equations -- 14 A Generalized Windowed Fourier Transform in Real Clifford Algebra Cl_{0,n} -- 15 The Balian-Low theorem for the Windowed Clifford-Fourier Transform -- 16 Sparse Representation of Signals in Hardy Space. - Index. 
520 # # |a Quaternion and Clifford Fourier and wavelet transformations generalize the classical theory to higher dimensions and are becoming increasingly important in diverse areas of mathematics, physics, computer science and engineering. This edited volume presents the state of the art in these hypercomplex transformations. The Clifford algebras unify Hamilton<U+0019>s quaternions with Grassmann algebra. A Clifford algebra is a complete algebra of a vector space and all its subspaces including the measurement of volumes and dihedral angles between any pair of subspaces. Quaternion and Clifford algebras permit the systematic generalization of many known concepts. This book provides comprehensive insights into current developments and applications including their performance and evaluation. Mathematically, it indicates where further investigation is required. For instance, attention is drawn to the matrix isomorphisms for hypercomplex algebras, which will help readers to see that software implementations are within our grasp. It also contributes to a growing unification of ideas and notation across the expanding field of hypercomplex transforms and wavelets. The first chapter provides a historical background and an overview of the relevant literature, and shows how the contributions that follow relate to each other and to prior work. The book will be a valuable resource for graduate students as well as for scientists and engineers. 
650 # 0 |a Mathematics. 
650 # 0 |a Computer vision. 
650 # 0 |a Matrix theory. 
650 # 0 |a Fourier analysis. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 # |a Sangwine, Stephen J.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034806022 
830 # 0 |a Trends in Mathematics 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0603-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)