Variable Lebesgue Spaces Foundations and Harmonic Analysis /

This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest sin...

Full description

Bibliographic Details
Main Authors: Cruz-Uribe, David V. (Author), Fiorenza, Alberto. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Springer Basel : Imprint: Birkhũser, 2013.
Series:Applied and Numerical Harmonic Analysis
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0548-3
LEADER 03462nam a22004935i 4500
001 14156
003 DE-He213
005 20130727061200.0
007 cr nn 008mamaa
008 130217s2013 sz | s |||| 0|eng d
020 # # |a 9783034805483  |9 978-3-0348-0548-3 
024 7 # |a 10.1007/978-3-0348-0548-3  |2 doi 
050 # 4 |a QA403-403.3 
072 # 7 |a PBKD  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.785  |2 23 
100 1 # |a Cruz-Uribe, David V.  |e author. 
245 1 0 |a Variable Lebesgue Spaces  |b Foundations and Harmonic Analysis /  |c by David V. Cruz-Uribe, Alberto Fiorenza.  |h [electronic resource] : 
264 # 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a IX, 312 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied and Numerical Harmonic Analysis 
505 0 # |a  1 Introduction -- 2 Structure of Variable Lebesgue Spaces -- 3 The Hardy-Littlewood Maximal Operator.- 4 Beyond Log-Hl̲der Continuity -- 5 Extrapolation in the Variable Lebesgue Spaces -- 6 Basic Properties of Variable Sobolev Spaces -- Appendix: Open Problems -- Bibliography -- Symbol Index -- Author Index -- Subject Index. . 
520 # # |a This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces. 
650 # 0 |a Mathematics. 
650 # 0 |a Harmonic analysis. 
650 # 0 |a Functional analysis. 
650 # 0 |a Global analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 # |a Fiorenza, Alberto.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034805476 
830 # 0 |a Applied and Numerical Harmonic Analysis 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0548-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)