Complex Kleinian Groups

This monograph lays down the foundations of the theory of complex Kleinian groups, a <U+001c>newborn area of mathematics whose origin can be traced back to the work of Riemann, Poincar,̌ Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of th...

Full description

Bibliographic Details
Main Authors: Cano, Angel. (Author), Navarrete, Juan Pablo. (Author), Seade, Jos.̌ (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Springer Basel : Imprint: Birkhũser, 2013.
Series:Progress in Mathematics ; 303
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0481-3
LEADER 03399nam a22005055i 4500
001 14143
003 DE-He213
005 20130727034456.0
007 cr nn 008mamaa
008 121116s2013 sz | s |||| 0|eng d
020 # # |a 9783034804813  |9 978-3-0348-0481-3 
024 7 # |a 10.1007/978-3-0348-0481-3  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Cano, Angel.  |e author. 
245 1 0 |a Complex Kleinian Groups  |c by Angel Cano, Juan Pablo Navarrete, Jos ̌Seade.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a XX, 271 p. 7 illus., 3 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematics ;  |v 303 
505 0 # |a  Preface -- Introduction -- Acknowledgments -- 1 A glance of the classical theory -- 2 Complex hyperbolic geometry -- 3 Complex Kleinian groups -- 4 Geometry and dynamics of automorphisms of P2C -- 5 Kleinian groups with a control group -- 6 The limit set in dimension two -- 7 On the dynamics of discrete subgroups of PU(n,1) -- 8 Projective orbifolds and dynamics in dimension two -- 9 Complex Schottky groups -- 10 Kleinian groups and twistor theory -- Bibliography -- Index. . 
520 # # |a This monograph lays down the foundations of the theory of complex Kleinian groups, a <U+001c>newborn area of mathematics whose origin can be traced back to the work of Riemann, Poincar,̌ Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can themselves be regarded as groups of holomorphic automorphisms of the complex projective line CP1. When we go into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere? or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories differ in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition; in the second, about an area of mathematics that is still in its infancy, and this is the focus of study in this monograph. It brings together several important areas of mathematics, e.g. classical Kleinian group actions, complex hyperbolic geometry, crystallographic groups and the uniformization problem for complex manifolds. 
650 # 0 |a Mathematics. 
650 # 0 |a Topological Groups. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
700 1 # |a Navarrete, Juan Pablo.  |e author. 
700 1 # |a Seade, Jos.̌  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034804806 
830 # 0 |a Progress in Mathematics ;  |v 303 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0481-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)