Proofs of the Cantor-Bernstein Theorem A Mathematical Excursion /

This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs...

Full description

Bibliographic Details
Main Author: Hinkis, Arie. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Springer Basel : Imprint: Birkhũser, 2013.
Series:Science Networks. Historical Studies ; 45
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0224-6
LEADER 04480nam a22004695i 4500
001 14132
003 DE-He213
005 20130726172313.0
007 cr nn 008mamaa
008 130228s2013 sz | s |||| 0|eng d
020 # # |a 9783034802246  |9 978-3-0348-0224-6 
024 7 # |a 10.1007/978-3-0348-0224-6  |2 doi 
050 # 4 |a QA21-27 
072 # 7 |a PBX  |2 bicssc 
072 # 7 |a MAT015000  |2 bisacsh 
082 0 4 |a 510.9  |2 23 
100 1 # |a Hinkis, Arie.  |e author. 
245 1 0 |a Proofs of the Cantor-Bernstein Theorem  |b A Mathematical Excursion /  |c by Arie Hinkis.  |h [electronic resource] : 
264 # 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a XXIII, 429 p. 29 illus., 3 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Science Networks. Historical Studies ;  |v 45 
505 0 # |a Preface. - Part I: Cantor and Dedekind -- Cantor's CBT proof for sets of the power of (II) -- Generalizing Cantor's CBT proof -- CBT in Cantor's 1878 Beitrag -- The theory of inconsistent sets -- Comparability in Cantor's writings -- The scheme of complete disjunction -- Ruptures in the Cantor-Dedekind correspondence -- The inconsistency of Dedekind's infinite set -- Dedekind's proof of CBT -- Part II: The early proofs -- Schrd̲er's Proof of CBT -- Bernstein, Borel and CBT -- Schoenflies' 1900 proof of CBT -- Zermelo's 1901 proof of CBT -- Bernstein's Division Theorem -- Part III: Under the logicist sky -- Russell's 1902 proof of CBT -- The role of CBT in Russell<U+0019>s Paradox -- Jourdain's 1904 generalization of Grundlagen -- Harward 1905 on Jourdain 1904 -- Poincar ̌and CBT -- Peano's proof of CBT -- J. KQnig's strings gestalt -- From kings to graphs -- Jourdain's improvements round -- Zermelo's 1908 proof of CBT -- Korselt's proof of CB -- Proofs of CBT in Principia Mathematica -- The origin of Hausdorff Paradox in BDT -- Part IV: At the Polish school -- SierpiDski's proofs of BDT -- Banach's proof of CBT -- Kuratowski's proof of BDT -- Early fixed-point CBT proofs: Whittaker; Tarski-Knaster -- CBT and BDT for order-types -- Sikorski's proof of CBT for Boolean algebras -- Tarski's proofs of BDT and the inequality-BDT -- Tarski's Fixed-Point Theorem and CBT -- Reichbach's proof of CBT -- Part V: Other ends and beginnings -- Hellmann's proof of CBT -- CBT and intuitionism -- CBT in category theory -- Conclusion -- Bibliography -- Index of names -- Index of subjects. 
520 # # |a This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schrd̲er, Bernstein, Borel, Zermelo, Poincar,̌ Russell, Peano, the Kn̲igs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos<U+0019> celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly anything but superficial, as the present book also offers new theoretical insights into the methodology of the development of mathematics (proof-processing), with implications for the historiography of mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Logic, Symbolic and mathematical. 
650 1 4 |a Mathematics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034802239 
830 # 0 |a Science Networks. Historical Studies ;  |v 45 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0348-0224-6 
912 # # |a ZDB-2-SHU 
950 # # |a Humanities, Social Sciences and Law (Springer-11648)