Geodesic Convexity in Graphs

Geodesic Convexity in Graphs�is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic co...

Full description

Bibliographic Details
Main Author: Pelayo, Ignacio M. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-8699-2
LEADER 02792nam a22004575i 4500
001 13984
003 DE-He213
005 20130913030807.0
007 cr nn 008mamaa
008 130906s2013 xxu| s |||| 0|eng d
020 # # |a 9781461486992  |9 978-1-4614-8699-2 
024 7 # |a 10.1007/978-1-4614-8699-2  |2 doi 
050 # 4 |a QA166-166.247 
072 # 7 |a PBV  |2 bicssc 
072 # 7 |a MAT013000  |2 bisacsh 
082 0 4 |a 511.5  |2 23 
100 1 # |a Pelayo, Ignacio M.  |e author. 
245 1 0 |a Geodesic Convexity in Graphs  |c by Ignacio M. Pelayo.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a VIII, 112 p. 41 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Mathematics,  |x 2191-8198 
520 # # |a Geodesic Convexity in Graphs�is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic convexity, including motivation and background, specific definitions, discussion and examples, results, proofs, exercises and open problems. The main and most st udied parameters involving geodesic convexity in graphs are both the geodetic and the hull number which are defined as the cardinality of minimum geodetic and hull set, respectively. This text reviews various results, obtained during the last one and a half decade, relating these two �invariants and some others such as convexity number, Steiner number, geodetic iteration number, Helly number, and Caratheodory number to a wide range a contexts, including products, boundary-type vertex sets, and perfect graph families. This monograph can serve as a supplement to a half-semester graduate�course in geodesic convexity�but is primarily�a guide for postgraduates and researchers interested in topics related to metric graph theory and graph convexity theory. � 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Global differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Graph Theory. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Partial Differential Equations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461486985 
830 # 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-8699-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)