Hermitian Analysis From Fourier Series to Cauchy-Riemann Geometry /

Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book: geometric...

Full description

Bibliographic Details
Main Author: D'Angelo, John P. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Birkhũser, 2013.
Series:Cornerstones,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-8526-1
LEADER 02911nam a22004815i 4500
001 13972
003 DE-He213
005 20130927122358.0
007 cr nn 008mamaa
008 130924s2013 xxu| s |||| 0|eng d
020 # # |a 9781461485261  |9 978-1-4614-8526-1 
024 7 # |a 10.1007/978-1-4614-8526-1  |2 doi 
050 # 4 |a QA403.5-404.5 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 # |a D'Angelo, John P.  |e author. 
245 1 0 |a Hermitian Analysis  |b From Fourier Series to Cauchy-Riemann Geometry /  |c by John P. D'Angelo.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a X, 203 p. 27 illus., 19 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Cornerstones,  |x 2197-182X 
505 0 # |a Preface -- Introduction to Fourier series -- Hilbert spaces -- Fourier transform on R -- Geometric considerations -- Appendix -- References -- Index. . 
520 # # |a Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book: geometric considerations in several complex variables. The final chapter includes complex differential forms, geometric inequalities from one and several complex variables, finite unitary groups, proper mappings, and naturally leads to the Cauchy-Riemann geometry of the unit sphere. The book thus takes the reader from the unit circle to the unit sphere. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. It will also be useful for students in physics and engineering, as it includes topics in harmonic analysis arising in these subjects. The inclusion of an appendix and more than 270 exercises makes this book suitable for a capstone undergraduate Honors class. 
650 # 0 |a Mathematics. 
650 # 0 |a Fourier analysis. 
650 # 0 |a Differential Equations. 
650 # 0 |a Global differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Ordinary Differential Equations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461485254 
830 # 0 |a Cornerstones,  |x 2197-182X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-8526-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)