Prolate Spheroidal Wave Functions of Order Zero Mathematical Tools for Bandlimited Approximation /

Prolate Spheroidal Wave Functions (PSWFs) are the eigenfunctions of the bandlimited operator in one dimension. As such, they play an important role in signal processing, Fourier analysis, and approximation theory. While historically the numerical evaluation of PSWFs presented serious difficulties, t...

Full description

Bibliographic Details
Main Authors: Osipov, Andrei. (Author), Rokhlin, Vladimir. (Author), Xiao, Hong. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US : Imprint: Springer, 2013.
Series:Applied Mathematical Sciences, 187
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-8259-8
LEADER 02924nam a22005055i 4500
001 13952
003 DE-He213
005 20131014031141.0
007 cr nn 008mamaa
008 131012s2013 xxu| s |||| 0|eng d
020 # # |a 9781461482598  |9 978-1-4614-8259-8 
024 7 # |a 10.1007/978-1-4614-8259-8  |2 doi 
050 # 4 |a QA297-299.4 
072 # 7 |a PBKS  |2 bicssc 
072 # 7 |a MAT021000  |2 bisacsh 
072 # 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 # |a Osipov, Andrei.  |e author. 
245 1 0 |a Prolate Spheroidal Wave Functions of Order Zero  |b Mathematical Tools for Bandlimited Approximation /  |c by Andrei Osipov, Vladimir Rokhlin, Hong Xiao.  |h [electronic resource] : 
264 # 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 379 p. 30 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied Mathematical Sciences,  |v 187  |x 0066-5452 ; 
505 0 # |a Introduction -- Mathematical and Numerical Preliminaries -- Overview.-�Analysis of the Differential Operator.-�Analysis of the Integral Operator.-�Rational Approximations of PSWFs.-Miscellaneous Properties of PSWFs.-��Asymptotic Analysis of PSWFs.-�Quadrature Rules and Interpolation via PSWFs.-�Numerical Algorithms .-�. 
520 # # |a Prolate Spheroidal Wave Functions (PSWFs) are the eigenfunctions of the bandlimited operator in one dimension. As such, they play an important role in signal processing, Fourier analysis, and approximation theory. While historically the numerical evaluation of PSWFs presented serious difficulties, the developments of the last fifteen years or so made them as computationally tractable as any other class of special functions. As a result, PSWFs have been becoming a popular computational tool. The present book serves as a complete, self-contained resource for both theory and computation. It will be of interest to a wide range of scientists and engineers, from mathematicians interested in PSWF as an analytical tool to electrical engineers designing filters and antennas. 
650 # 0 |a Mathematics. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 # |a Rokhlin, Vladimir.  |e author. 
700 1 # |a Xiao, Hong.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461482581 
830 # 0 |a Applied Mathematical Sciences,  |v 187  |x 0066-5452 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-8259-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)