Harmonic Analysis on Symmetric Spaces<U+0014>Euclidean Space, the Sphere, and the Poincar ̌Upper Half-Plane

This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincar ̌upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal st...

Full description

Bibliographic Details
Main Author: Terras, Audrey. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Edition:2nd ed. 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7972-7
LEADER 04329nam a22005415i 4500
001 13924
003 DE-He213
005 20130918030914.0
007 cr nn 008mamaa
008 130912s2013 xxu| s |||| 0|eng d
020 # # |a 9781461479727  |9 978-1-4614-7972-7 
024 7 # |a 10.1007/978-1-4614-7972-7  |2 doi 
050 # 4 |a QA403-403.3 
072 # 7 |a PBKD  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.785  |2 23 
100 1 # |a Terras, Audrey.  |e author. 
245 1 0 |a Harmonic Analysis on Symmetric Spaces<U+0014>Euclidean Space, the Sphere, and the Poincar ̌Upper Half-Plane  |c by Audrey Terras.  |h [electronic resource] / 
250 # # |a 2nd ed. 2013. 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 413 p. 83 illus., 32 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Chapter 1 Flat Space. Fourier Analysis on R^m. -- 1.1 Distributions or Generalized Functions -- 1.2 Fourier Integrals -- 1.3 Fourier Series and the Poisson Summation Formula -- 1.4 Mellin Transforms, Epstein and Dedekind Zeta Functions -- 1.5 Finite Symmetric Spaces, Wavelets, Quasicrystals, Weyl<U+0019>s Criterion for Uniform Distribution -- Chapter 2 A Compact Symmetric Space--The Sphere -- 2.1 Fourier Analysis on the Sphere -- 2.2 O(3) and R^3. The Radon Transform -- Chapter 3 The Poincar ̌Upper Half-Plane -- 3.1 Hyperbolic Geometry -- 3.2 Harmonic Analysis on H -- 3.3 Fundamental Domains for Discrete Subgroups <U+0093> of G = SL(2, R) -- 3.4 Modular of Automorphic Forms--Classical -- 3.5 Automorphic Forms--Not So Classical--Maass Waveforms -- 3.6 Modular Forms and Dirichlet Series. Hecke Theory and Generalizations -- References -- Index. 
520 # # |a This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincar ̌upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections, new topics, and updates have been incorporated in this new edition. These include discussions of the work of P. Sarnak and others making progress on various conjectures on modular forms, the work of T. Sunada, Marie-France Vignřas, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", Ramanujan graphs, wavelets, quasicrystals, modular knots, triangle and quaternion groups, computations of Maass waveforms, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincar ̌upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups <U+0093>, tessellations of H from such discrete group actions, automorphic forms, the Selberg trace formula and its applications in spectral theory as well as number theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Group theory. 
650 # 0 |a Topological Groups. 
650 # 0 |a Harmonic analysis. 
650 # 0 |a Fourier analysis. 
650 # 0 |a Functions of complex variables. 
650 # 0 |a Functions, special. 
650 1 4 |a Mathematics. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Special Functions. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461479710 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7972-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)