Stearoyl-CoA Desaturase Genes in Lipid Metabolism

James Ntambi has gathered top authors to write about the remarkable growth of research on the role of the stearoyl-CoA desaturase (SCD) genes in metabolism in different species including human. The book shows that beginning with simple cellular models of differentiation a broad and comprehensive ana...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Ntambi, Ph.D., James M. (Editor)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7969-7
Description
Summary:James Ntambi has gathered top authors to write about the remarkable growth of research on the role of the stearoyl-CoA desaturase (SCD) genes in metabolism in different species including human. The book shows that beginning with simple cellular models of differentiation a broad and comprehensive analysis of the SCD gene family in a number of species and biological systems has been carried out over the course of the last twenty five years. SCD is a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids (MUFA) from saturated fatty acid precursors. At first glance, SCD would be considered a housekeeping enzyme because its product oleate is a well-known MUFA that is abundant in many dietary sources and tissue lipids. A particular highlight in the chapters of the book is that MUFAs may have signaling properties that regulate metabolism. For example, a proper ratio of saturated to MUFA contributes to membrane fluidity, and oleate has also been implicated as a mediator of signal transduction, cellular differentiation and metabolic homeostasis. It is also highlighted that SCD-1 repression mediates the metabolic effects of the hormone leptin. Conditional alleles and corresponding tissue-specific knockout mouse models for many of the SCD gene isorfms have provided a wealth of information on not only tissue-specific fatty acid metabolism but also the key transcription factors that regulate SCD expression under a variety of metabolic and genetic backgrounds. The studies described indicate that control of SCD expression occurs via a series of complex signal transduction schemes making SCD one of the most highly studied lipogenic gene families to date.
Physical Description:XI, 239 p. 42 illus., 24 illus. in color. online resource.
ISBN:9781461479697