Algebraic Theory of Quadratic Numbers

By focusing on quadratic numbers, this advanced undergraduate or masters level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove importan...

Full description

Bibliographic Details
Main Author: Trifkovi, Mak. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Universitext,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7717-4
LEADER 02700nam a22004575i 4500
001 13882
003 DE-He213
005 20130919031710.0
007 cr nn 008mamaa
008 130914s2013 xxu| s |||| 0|eng d
020 # # |a 9781461477174  |9 978-1-4614-7717-4 
024 7 # |a 10.1007/978-1-4614-7717-4  |2 doi 
050 # 4 |a QA241-247.5 
072 # 7 |a PBH  |2 bicssc 
072 # 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 # |a Trifkovi , Mak.  |e author. 
245 1 0 |a Algebraic Theory of Quadratic Numbers  |c by Mak Trifkovi .  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 197 p. 29 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext,  |x 0172-5939 
505 0 # |a 1 Examples -- 2 A Crash Course in Ring Theory -- 3 Lattices -- 4 Arithmetic in Q[ D] -- 5 The Ideal Class Group and Geometry�of Numbers -- 6 Continued Fractions -- 7 Quadratic Forms -- Appendix -- Hints to Selected Exercises -- Index. 
520 # # |a By focusing on quadratic numbers, this advanced undergraduate or master s level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group.� The book concludes with two topics particular to quadratic fields: continued fractions and quadratic forms.� The treatment of quadratic forms is somewhat more advanced� than usual, with an emphasis on their connection with ideal classes and a discussion of Bhargava cubes. The numerous exercises in the text offer the reader hands-on computational experience with elements and ideals in quadratic number fields.� The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders.� Prerequisites include elementary number theory and a basic familiarity with ring theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebra. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461477167 
830 # 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7717-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)