Measure, Integral, Derivative A Course on Lebesgue's Theory /

This classroom-tested text is intended for a one-semester course in Lebesgue<U+0019>s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measur...

Full description

Bibliographic Details
Main Author: Ovchinnikov, Sergei. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Universitext,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7196-7
LEADER 02795nam a22004575i 4500
001 13781
003 DE-He213
005 20130727075836.0
007 cr nn 008mamaa
008 130430s2013 xxu| s |||| 0|eng d
020 # # |a 9781461471967  |9 978-1-4614-7196-7 
024 7 # |a 10.1007/978-1-4614-7196-7  |2 doi 
050 # 4 |a QA312-312.5 
072 # 7 |a PBKL  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.42  |2 23 
100 1 # |a Ovchinnikov, Sergei.  |e author. 
245 1 0 |a Measure, Integral, Derivative  |b A Course on Lebesgue's Theory /  |c by Sergei Ovchinnikov.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 146 p. 16 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext,  |x 0172-5939 
505 0 # |a 1 Preliminaries -- 2 Lebesgue Measure -- 3 Lebesgue Integration -- 4 Differentiation and Integration -- A Measure and Integral over Unbounded Sets -- Index. 
520 # # |a This classroom-tested text is intended for a one-semester course in Lebesgue<U+0019>s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where ©-algebras are not used in the text on measure theory and Dini<U+0019>s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue<U+0019>s theory are found in the book. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Real Functions. 
650 2 4 |a Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461471950 
830 # 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7196-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)