Quantum Theory for Mathematicians

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to...

Full description

Bibliographic Details
Main Author: Hall, Brian C. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Graduate Texts in Mathematics, 267
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7116-5
LEADER 04175nam a22005415i 4500
001 13762
003 DE-He213
005 20130727075737.0
007 cr nn 008mamaa
008 130619s2013 xxu| s |||| 0|eng d
020 # # |a 9781461471165  |9 978-1-4614-7116-5 
024 7 # |a 10.1007/978-1-4614-7116-5  |2 doi 
050 # 4 |a QA401-425 
050 # 4 |a QC19.2-20.85 
072 # 7 |a PHU  |2 bicssc 
072 # 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 # |a Hall, Brian C.  |e author. 
245 1 0 |a Quantum Theory for Mathematicians  |c by Brian C. Hall.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVI, 554 p. 30 illus., 2 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Graduate Texts in Mathematics,  |v 267  |x 0072-5285 ; 
505 0 # |a 1 The Experimental Origins of Quantum Mechanics -- 2 A First Approach to Classical Mechanics -- 3 A First Approach to Quantum Mechanics -- 4 The Free Schrd̲inger Equation -- 5 A Particle in a Square Well -- 6 Perspectives on the Spectral Theorem -- 7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements -- 8 The Spectral Theorem for Bounded Sef-Adjoint Operators: Proofs -- 9 Unbounded Self-Adjoint Operators -- 10 The Spectral Theorem for Unbounded Self-Adjoint Operators -- 11 The Harmonic Oscillator -- 12 The Uncertainty Principle -- 13 Quantization Schemes for Euclidean Space -- 14 The Stone<U+0013>von Neumann Theorem -- 15 The WKB Approximation -- 16 Lie Groups, Lie Algebras, and Representations -- 17 Angular Momentum and Spin -- 18 Radial Potentials and the Hydrogen Atom -- 19 Systems and Subsystems, Multiple Particles -- V Advanced Topics in Classical and Quantum Mechanics -- 20 The Path-Integral Formulation of Quantum Mechanics -- 21 Hamiltonian Mechanics on Manifolds -- 22 Geometric Quantization on Euclidean Space -- 23 Geometric Quantization on Manifolds -- A Review of Basic Material -- References. - Index. 
520 # # |a Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrd̲inger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone<U+0013>von Neumann Theorem; the Wentzel<U+0013>Kramers<U+0013>Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization. 
650 # 0 |a Mathematics. 
650 # 0 |a Topological Groups. 
650 # 0 |a Functional analysis. 
650 # 0 |a Quantum theory. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461471158 
830 # 0 |a Graduate Texts in Mathematics,  |v 267  |x 0072-5285 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7116-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)