Overconvergence in Complex Approximation

This monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators. The book is divided into three chapters. First, the results for the Schurer-Faber operator, Beta operators of first kind, Bernstein-Durrmeyer-type operators and Lorentz operator are p...

Full description

Bibliographic Details
Main Author: Gal, Sorin G. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7098-4
LEADER 02969nam a22004455i 4500
001 13756
003 DE-He213
005 20130727075742.0
007 cr nn 008mamaa
008 130427s2013 xxu| s |||| 0|eng d
020 # # |a 9781461470984  |9 978-1-4614-7098-4 
024 7 # |a 10.1007/978-1-4614-7098-4  |2 doi 
050 # 4 |a QA401-425 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 # |a Gal, Sorin G.  |e author. 
245 1 0 |a Overconvergence in Complex Approximation  |c by Sorin G. Gal.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIV, 194 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Overconvergence in C of Some Bernstein-Type Operators -- Overconvergence and Convergence in C of Some Integral�Convolutions -- Overconvergence in C of the Orthogonal Expansions . 
520 # # |a This monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators. The book is divided into three chapters. First, the results for the Schurer-Faber operator, Beta operators of first kind, Bernstein-Durrmeyer-type operators and Lorentz operator are presented. The main focus is on results for several q-Bernstein kind of operators with q > 1, when the geometric order of approximation 1/q^n is obtained not only in complex compact disks but also in quaternion compact disks and in other compact subsets of the complex plane. The focus then shifts to quantitative overconvergence and convolution overconvergence results for the complex potentials generated by the Beta and Gamma Euler's functions. Finally quantitative overconvergence results for the most classical orthogonal expansions� (of� Chebyshev, Legendre, Hermite,� Laguerre and Gegenbauer kinds) attached to vector-valued functions are presented. Each chapter concludes with a notes and open problems section, thus providing stimulation for further research. An extensive bibliography and index complete the text.� � This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis. 
650 # 0 |a Mathematics. 
650 # 0 |a Functions of complex variables. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461470977 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-7098-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)