Genetic Programming Theory and Practice X

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evo...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Riolo, Rick. (Editor), Vladislavleva, Ekaterina. (Editor), Ritchie, Marylyn D. (Editor), Moore, Jason H. (Editor)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Genetic and Evolutionary Computation,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6846-2
LEADER 04473nam a22005535i 4500
001 13686
003 DE-He213
005 20130727075423.0
007 cr nn 008mamaa
008 130524s2013 xxu| s |||| 0|eng d
020 # # |a 9781461468462  |9 978-1-4614-6846-2 
024 7 # |a 10.1007/978-1-4614-6846-2  |2 doi 
050 # 4 |a Q334-342 
050 # 4 |a TJ210.2-211.495 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a TJFM1  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Riolo, Rick.  |e editor. 
245 1 0 |a Genetic Programming Theory and Practice X  |c edited by Rick Riolo, Ekaterina Vladislavleva, Marylyn D Ritchie, Jason H. Moore.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XXVI, 242 p. 71 illus., 26 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Genetic and Evolutionary Computation,  |x 1932-0167 
505 0 # |a Evolving SQL Queries from Examples with Developmental Genetic Programming -- A Practical Platform for On-Line Genetic Programming for Robotics -- Cartesian Genetic Programming for Image Processing -- A new mutation paradigm for Genetic Programming -- Introducing an Age-Varying Fitness Estimation Function -- EC-Star: A Massive-Scale, Hub and Spoke, Distributed Genetic Programming System -- Genetic Analysis of Prostate Cancer Using Computational Evolution, Pareto-Optimization and Post-Processing -- Meta-dimensional analysis of phenotypes using the Analysis Tool for Heritable and Environmental Network Associations -- A Baseline Symbolic Regression Algorithm -- Symbolic Regression Model Comparison Approach Using Transmitted Variation -- A Framework for the Empirical Analysis of Genetic Programming System Performance -- More or Less? Two Approaches to Evolving Game-Playing Strategies -- Symbolic Regression is Not Enough -- FlexGP.py: Prototyping Flexibly-Scaled, Flexibly-Factored Genetic Programming for the Cloud -- Representing Communication and Learning in Femtocell Pilot Power Control Algorithms. 
520 # # |a These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of �injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results. 
650 # 0 |a Computer science. 
650 # 0 |a Information theory. 
650 # 0 |a Computer software. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Theory of Computation. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Programming Techniques. 
700 1 # |a Vladislavleva, Ekaterina.  |e editor. 
700 1 # |a Ritchie, Marylyn D.  |e editor. 
700 1 # |a Moore, Jason H.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461468455 
830 # 0 |a Genetic and Evolutionary Computation,  |x 1932-0167 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6846-2 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)