Approximation Theory and Harmonic Analysis on Spheres and Balls

This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with...

Full description

Bibliographic Details
Main Authors: Dai, Feng. (Author), Xu, Yuan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6660-4
LEADER 03466nam a22005055i 4500
001 13634
003 DE-He213
005 20130727075233.0
007 cr nn 008mamaa
008 130417s2013 xxu| s |||| 0|eng d
020 # # |a 9781461466604  |9 978-1-4614-6660-4 
024 7 # |a 10.1007/978-1-4614-6660-4  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Dai, Feng.  |e author. 
245 1 0 |a Approximation Theory and Harmonic Analysis on Spheres and Balls  |c by Feng Dai, Yuan Xu.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVIII, 440 p. 1 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 # |a 1 Spherical Harmonics -- 2 Convolution and Spherical Harmonic Expansion -- 3 Littlewood-Paley Theory and Multiplier Theorem -- 4 Approximation on the Sphere -- 5 Weighted Polynomial Inequalities -- 6 Cubature Formulas on Spheres -- 7 Harmonic Analysis Associated to Reflection Groups -- 8 Boundedness of Projection Operator and Cesr̉o Means -- 9 Projection Operators and Cesr̉o Means in L^p Spaces -- 10 Weighted Best Approximation by Polynomials -- 11 Harmonic Analysis on the Unit Ball -- 12 Polynomial Approximation on the Unit Ball -- 13 Harmonic Analysis on the Simplex -- 14 Applications -- A Distance, Difference and Integral Formulas -- B Jacobi and Related Orthogonal Polynomials -- References -- Index -- Symbol Index. 
520 # # |a This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Fourier analysis. 
650 # 0 |a Functions, special. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Special Functions. 
700 1 # |a Xu, Yuan.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461466598 
830 # 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6660-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)