A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem with Simulations and Examples in SASʼ /

In statistics, the Behrens<U+0013>Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samp...

Full description

Bibliographic Details
Main Author: Desai, Tejas. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6443-3
LEADER 03092nam a22004575i 4500
001 13583
003 DE-He213
005 20130727075039.0
007 cr nn 008mamaa
008 130228s2013 xxu| s |||| 0|eng d
020 # # |a 9781461464433  |9 978-1-4614-6443-3 
024 7 # |a 10.1007/978-1-4614-6443-3  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Desai, Tejas.  |e author. 
245 1 2 |a A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem  |b with Simulations and Examples in SASʼ /  |c by Tejas Desai.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a V, 55 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 # |a Introduction -- On Testing for Multivariate Normality -- On Testing Equality of Covariance Matrices -- On Heteroscedastic MANOVA -- References. 
520 # # |a  In statistics, the Behrens<U+0013>Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an approach to the Behrens-Fisher problem. Since high-speed computers were not available in Fisher<U+0019>s time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher<U+0019>s approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case. In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem. We start out by presenting a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples. 
650 # 0 |a Statistics. 
650 # 0 |a Mathematical statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics, general. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461464426 
830 # 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6443-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)