Elementary Analysis The Theory of Calculus /

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous p...

Full description

Bibliographic Details
Main Author: Ross, Kenneth A. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Edition:2nd ed. 2013.
Series:Undergraduate Texts in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6271-2
LEADER 02992nam a22004575i 4500
001 13540
003 DE-He213
005 20130727071737.0
007 cr nn 008mamaa
008 130417s2013 xxu| s |||| 0|eng d
020 # # |a 9781461462712  |9 978-1-4614-6271-2 
024 7 # |a 10.1007/978-1-4614-6271-2  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Ross, Kenneth A.  |e author. 
245 1 0 |a Elementary Analysis  |b The Theory of Calculus /  |c by Kenneth A. Ross.  |h [electronic resource] : 
250 # # |a 2nd ed. 2013. 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 409 p. 35 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 # |a Preface -- 1 Introduction -- 2 Sequences -- 3 Continuity -- 4 Sequences and Series of Functions -- 5 Differentiation -- 6 Integration -- 7 Capstone -- Appendix on Set Notation -- Selected Hints and Answers -- References -- Index. 
520 # # |a For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book<U+0019>s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions. Review from the first edition: "This book is intended for the student who has a good, but nav̐e, understanding of elementary calculus and now wishes to gain a thorough understanding of a few basic concepts in analysis.... The author has tried to write in an informal but precise style, stressing motivation and methods of proof, and ... has succeeded admirably." <U+0014>MATHEMATICAL REVIEWS 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Real Functions. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461462705 
830 # 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-6271-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)