The Implicit Function Theorem History, Theory, and Applications /

The implicit function theorem is part of the bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differe...

Full description

Bibliographic Details
Main Authors: Krantz, Steven G. (Author), Parks, Harold R. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Birkhũser, 2013.
Series:Modern Birkhũser Classics
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5981-1
LEADER 03416nam a22005295i 4500
001 13468
003 DE-He213
005 20130727061706.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 # # |a 9781461459811  |9 978-1-4614-5981-1 
024 7 # |a 10.1007/978-1-4614-5981-1  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Krantz, Steven G.  |e author. 
245 1 4 |a The Implicit Function Theorem  |b History, Theory, and Applications /  |c by Steven G. Krantz, Harold R. Parks.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhũser,  |c 2013. 
300 # # |a XIII, 163 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Modern Birkhũser Classics 
505 0 # |a Preface -- Introduction to the Implicit Function Theorem -- History -- Basic Ideas -- Applications -- Variations and Generalizations -- Advanced Implicit Function Theorems -- Glossary -- Bibliography -- Index. 
520 # # |a The implicit function theorem is part of the bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth functions, and (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash<U+0013>Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present uncorrected reprint of this classic monograph. Originally published in 2002, The Implicit Function Theorem is an accessible and thorough treatment of implicit and inverse function theorems and their applications. It will be of interest to mathematicians, graduate/advanced undergraduate students, and to those who apply mathematics. The book unifies disparate ideas that have played an important role in modern mathematics. It serves to document and place in context a substantial body of mathematical ideas. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Differential Equations. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Global differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Ordinary Differential Equations. 
700 1 # |a Parks, Harold R.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461459804 
830 # 0 |a Modern Birkhũser Classics 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5981-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)