On the Higher-Order Sheffer Orthogonal Polynomial Sequences

On the Higher-Order Sheffer Orthogonal Polynomial Sequences sheds light on the existence/non-existence of B-Type 1 orthogonal polynomials. This book presents a template for analyzing potential orthogonal polynomial sequences including additional higher-order Sheffer classes. This text not only shows...

Full description

Bibliographic Details
Main Author: Galiffa, Daniel J. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5969-9
LEADER 03158nam a22004575i 4500
001 13464
003 DE-He213
005 20130727061707.0
007 cr nn 008mamaa
008 130107s2013 xxu| s |||| 0|eng d
020 # # |a 9781461459699  |9 978-1-4614-5969-9 
024 7 # |a 10.1007/978-1-4614-5969-9  |2 doi 
050 # 4 |a QA184-205 
072 # 7 |a PBF  |2 bicssc 
072 # 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 # |a Galiffa, Daniel J.  |e author. 
245 1 0 |a On the Higher-Order Sheffer Orthogonal Polynomial Sequences  |c by Daniel J. Galiffa.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 106 p. 2 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 # |a 1. The Sheffer A-Type 0 Orthogonal Polynomial Sequences and Related Results -- 2. Some Applications of the Sheffer A-Type 0 Orthogonal Polynomial Sequences -- 3. A Method for Analyzing a Special Case of the Sheffer B-Type 1 Polynomial Sequences. 
520 # # |a On the Higher-Order Sheffer Orthogonal Polynomial Sequences sheds light on the existence/non-existence of B-Type 1 orthogonal polynomials. This book presents a template for analyzing potential orthogonal polynomial sequences including additional higher-order Sheffer classes. This text not only shows that there are no OPS for the special case the B-Type 1 class, but that there are no orthogonal polynomial sequences for the general B-Type 1 class as well. Moreover, it is quite provocative how the seemingly subtle transition from the B-Type 0 class to the B-Type 1 class leads to a drastically more difficult characterization problem. Despite this issue, a procedure is established that yields a definite answer to our current characterization problem, which can also be extended to various other characterization problems as well. Accessible to undergraduate students in the mathematical sciences and related fields, This book functions as an important reference work regarding the Sheffer sequences. The author takes advantage of Mathematica 7 to display unique detailed code and increase the reader's understanding of the implementation of Mathematica 7 and facilitate further experimentation. In addition, this book provides an excellent example of how packages like Mathematica 7 can be used to derive rigorous mathematical results. 
650 # 0 |a Mathematics. 
650 # 0 |a Matrix theory. 
650 # 0 |a Computer science. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Computational Science and Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461459682 
830 # 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5969-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)