Drinfeld Moduli Schemes and Automorphic Forms The Theory of Elliptic Modules with Applications /

Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the authors original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and...

Full description

Bibliographic Details
Main Author: Flicker, Yuval Z. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5888-3
LEADER 02768nam a22004935i 4500
001 13443
003 DE-He213
005 20130727061258.0
007 cr nn 008mamaa
008 130107s2013 xxu| s |||| 0|eng d
020 # # |a 9781461458883  |9 978-1-4614-5888-3 
024 7 # |a 10.1007/978-1-4614-5888-3  |2 doi 
050 # 4 |a QA241-247.5 
072 # 7 |a PBH  |2 bicssc 
072 # 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 # |a Flicker, Yuval Z.  |e author. 
245 1 0 |a Drinfeld Moduli Schemes and Automorphic Forms  |b The Theory of Elliptic Modules with Applications /  |c by Yuval Z. Flicker.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a V, 150 p. 5 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 # |a Elliptic Moduli -- Hecke Correspondences -- Trace Formulae -- Higher Recipropcity Laws.�. 
520 # # |a Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author s original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and,�in the global case, under a restriction at a single place. It develops Drinfeld s theory of elliptic modules, their moduli schemes and covering schemes, the simple trace formula, the fixed point formula, as well as the congruence relations and a "simple"�converse theorem, not yet published anywhere. This version, based on a recent course taught by the author at The�Ohio State University, is updated with references to research that has extended and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an�entrance to this fascinating area of mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Topological Groups. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Algebra. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461458876 
830 # 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5888-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)