Optimization

Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Build...

Full description

Bibliographic Details
Main Author: Lange, Kenneth. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Edition:2nd ed. 2013.
Series:Springer Texts in Statistics, 95
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5838-8
LEADER 03525nam a22005055i 4500
001 13430
003 DE-He213
005 20130727060902.0
007 cr nn 008mamaa
008 130321s2013 xxu| s |||| 0|eng d
020 # # |a 9781461458388  |9 978-1-4614-5838-8 
024 7 # |a 10.1007/978-1-4614-5838-8  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Lange, Kenneth.  |e author. 
245 1 0 |a Optimization  |c by Kenneth Lange.  |h [electronic resource] / 
250 # # |a 2nd ed. 2013. 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 529 p. 19 illus., 3 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Texts in Statistics,  |v 95  |x 1431-875X ; 
505 0 # |a Elementary Optimization -- The Seven C s of Analysis -- The Gauge Integral -- Differentiation -- Karush-Kuhn-Tucker Theory -- Convexity -- Block Relaxation -- The MM Algorithm -- The EM Algorithm -- Newton s Method and Scoring -- Conjugate Gradient and Quasi-Newton -- Analysis of Convergence -- Penalty and Barrier Methods -- Convex Calculus -- Feasibility and Duality -- Convex Minimization Algorithms -- The Calculus of Variations -- Appendix: Mathematical Notes -- References -- Index. 
520 # # |a Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications. � In this second edition, the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. �Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions. 
650 # 0 |a Statistics. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a Mathematical statistics. 
650 # 0 |a Operations research. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Optimization. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461458371 
830 # 0 |a Springer Texts in Statistics,  |v 95  |x 1431-875X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5838-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)