Numerical Approximation of Exact Controls for Waves

This book is devoted to fully developing and comparing�the two main approaches to the numerical approximation of controls for wave propagation phenomena: the continuous and the discrete.�This is accomplished�in the abstract functional setting of conservative semigroups.The main results of the work u...

Full description

Bibliographic Details
Main Authors: Ervedoza, Sylvain. (Author), Zuazua, Enrique. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5808-1
LEADER 03487nam a22005415i 4500
001 13422
003 DE-He213
005 20130727060843.0
007 cr nn 008mamaa
008 130220s2013 xxu| s |||| 0|eng d
020 # # |a 9781461458081  |9 978-1-4614-5808-1 
024 7 # |a 10.1007/978-1-4614-5808-1  |2 doi 
050 # 4 |a QA401-425 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 # |a Ervedoza, Sylvain.  |e author. 
245 1 0 |a Numerical Approximation of Exact Controls for Waves  |c by Sylvain Ervedoza, Enrique Zuazua.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 122 p. 17 illus., 3 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 # |a 1.Numerical approximation of exact controls for waves -- 2.The discrete 1-d wave equation -- 3.Convergence for homogeneous boundary conditions -- 4.Convergence with non-homogeneous data -- 5. Further comments and open problems -- References. 
520 # # |a This book is devoted to fully developing and comparing�the two main approaches to the numerical approximation of controls for wave propagation phenomena: the continuous and the discrete.�This is accomplished�in the abstract functional setting of conservative semigroups.The main results of the work unify, to a large extent, these two�approaches, which yield�similaralgorithms and convergence rates. The discrete approach, however, gives�not only efficient numerical approximations of the continuous controls, but also ensures some partial controllability properties�of the finite-dimensional approximated dynamics. Moreover, it has�the�advantage of leading to iterative approximation processes that converge without a limiting threshold in the number of iterations. Such a threshold, which is hard to compute and estimate in practice, is a drawback of the methods emanating from the continuous approach.�To complement this theory, the book provides convergence results for the discrete wave equation when discretized using finite differences and proves the convergence of the discrete wave equation with non-homogeneous Dirichlet conditions. The first book to explore these topics in depth, "On the Numerical Approximations of Controls for Waves" has rich applications to data assimilation problems and�will be of interest to researchers who deal with wave approximations. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Systems theory. 
650 # 0 |a Algorithms. 
650 # 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Algorithms. 
650 2 4 |a Applications of Mathematics. 
700 1 # |a Zuazua, Enrique.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461458074 
830 # 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5808-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)