A Course on Mathematical Logic

This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gd̲el<U+0019>s incompleteness theo...

Full description

Bibliographic Details
Main Author: Srivastava, Shashi Mohan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Edition:2nd ed. 2013.
Series:Universitext,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5746-6
LEADER 03544nam a22005055i 4500
001 13407
003 DE-He213
005 20130727060755.0
007 cr nn 008mamaa
008 130125s2013 xxu| s |||| 0|eng d
020 # # |a 9781461457466  |9 978-1-4614-5746-6 
024 7 # |a 10.1007/978-1-4614-5746-6  |2 doi 
050 # 4 |a QA8.9-10.3 
072 # 7 |a PBC  |2 bicssc 
072 # 7 |a PBCD  |2 bicssc 
072 # 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 # |a Srivastava, Shashi Mohan.  |e author. 
245 1 2 |a A Course on Mathematical Logic  |c by Shashi Mohan Srivastava.  |h [electronic resource] / 
250 # # |a 2nd ed. 2013. 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 198 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext,  |x 0172-5939 
505 0 # |a Preface -- 1 Syntax of First-Order Logic -- 2 Semantics of First-Order Languages -- 3 Propositional Logic -- 4 Completeness Theorem for First-Order Logic -- 5 Model Theory -- 6 Recursive Functions and Arithmetization of Theories -- 7 Incompleteness Theorems and Recursion Theory -- References -- Index. 
520 # # |a This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gd̲el<U+0019>s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more. Review from the first edition: "All results included in the book are very carefully selected and proved. The author<U+0019>s manner of writing is excellent, which will surely make this book useful to many categories of readers." --Marius Tarnauceanu, Zentralblatt MATH 
650 # 0 |a Mathematics. 
650 # 0 |a Computer science. 
650 # 0 |a Algebra. 
650 # 0 |a Logic, Symbolic and mathematical. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Algebra. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461457459 
830 # 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5746-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)