Derivatives of Inner Functions

Derivatives of Inner Functions was inspired by a conference held at the Fields Institute in 2011 entitled "Blaschke Products and Their Applications." Inner functions form an important subclass of bounded analytic functions. Since they have unimodular boundary values, they appear in many ex...

Full description

Bibliographic Details
Main Author: Mashreghi, Javad. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Fields Institute Monographs, 31
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5611-7
LEADER 02528nam a22004695i 4500
001 13373
003 DE-He213
005 20130727060401.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 # # |a 9781461456117  |9 978-1-4614-5611-7 
024 7 # |a 10.1007/978-1-4614-5611-7  |2 doi 
050 # 4 |a QA331-355 
072 # 7 |a PBKD  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 # |a Mashreghi, Javad.  |e author. 
245 1 0 |a Derivatives of Inner Functions  |c by Javad Mashreghi.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a X, 169 p. 2 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Fields Institute Monographs,  |v 31  |x 1069-5273 ; 
520 # # |a Derivatives of Inner Functions was inspired by a conference held at the Fields Institute in 2011 entitled "Blaschke Products and Their Applications." Inner functions form an important subclass of bounded analytic functions. Since they have unimodular boundary values, they appear in many extremal problems of complex analysis. They have been extensively studied since the early twentieth century and the literature on this topic is vast. This book is devoted to a concise study of derivatives of inner functions and is confined to treating the integral means of derivatives and presenting a comprehensive list of results on Hardy and Bergman means. This self-contained monograph allows researchers to get acquainted with the essentials of inner functions, rendering this theory accessible to graduate students while providing the reader with rapid access to the frontiers of research in this field. 
650 # 0 |a Mathematics. 
650 # 0 |a Functional analysis. 
650 # 0 |a Functions of complex variables. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461456100 
830 # 0 |a Fields Institute Monographs,  |v 31  |x 1069-5273 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5611-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)