Smoothing Spline ANOVA Models

Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data anal...

Full description

Bibliographic Details
Main Author: Gu, Chong. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Edition:2nd ed. 2013.
Series:Springer Series in Statistics, 297
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5369-7
LEADER 03061nam a22004455i 4500
001 13308
003 DE-He213
005 20130727055754.0
007 cr nn 008mamaa
008 130125s2013 xxu| s |||| 0|eng d
020 # # |a 9781461453697  |9 978-1-4614-5369-7 
024 7 # |a 10.1007/978-1-4614-5369-7  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Gu, Chong.  |e author. 
245 1 0 |a Smoothing Spline ANOVA Models  |c by Chong Gu.  |h [electronic resource] / 
250 # # |a 2nd ed. 2013. 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVIII, 433 p. 82 illus., 69 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Series in Statistics,  |v 297  |x 0172-7397 ; 
505 0 # |a Introduction -- Model Construction -- Regression with Gaussian-Type Responses -- More Splines -- Regression and Exponential Families -- Regression with Correlated Responses -- Probability Density Estimation -- Hazard Rate Estimation -- Asymptotic Convergence -- Penalized Pseudo Likelihood. 
520 # # |a Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties, that are suitable for both univariate and multivariate problems. In this book, the author presents a treatise on penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. 
650 # 0 |a Statistics. 
650 # 0 |a Mathematical statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461453680 
830 # 0 |a Springer Series in Statistics,  |v 297  |x 0172-7397 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5369-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)