Emotion Recognition using Speech Features

Emotion Recognition Using Speech Features covers emotion-specific features present in speech and�discussion of�suitable models for capturing emotion-specific information for distinguishing different emotions.� The content of this book is important for designing and developing� natural and sophisti...

Full description

Bibliographic Details
Main Authors: Rao, K. Sreenivasa. (Author), Koolagudi, Shashidhar G. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Electrical and Computer Engineering, SpringerBriefs in Speech Technology,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5143-3
LEADER 03376nam a22005295i 4500
001 13242
003 DE-He213
005 20130727044830.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 # # |a 9781461451433  |9 978-1-4614-5143-3 
024 7 # |a 10.1007/978-1-4614-5143-3  |2 doi 
050 # 4 |a TK5102.9 
050 # 4 |a TA1637-1638 
050 # 4 |a TK7882.S65 
072 # 7 |a TTBM  |2 bicssc 
072 # 7 |a UYS  |2 bicssc 
072 # 7 |a TEC008000  |2 bisacsh 
072 # 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 # |a Rao, K. Sreenivasa.  |e author. 
245 1 0 |a Emotion Recognition using Speech Features  |c by K. Sreenivasa Rao, Shashidhar G. Koolagudi.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 124 p. 30 illus., 6 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Electrical and Computer Engineering, SpringerBriefs in Speech Technology,  |x 2191-8112 
505 0 # |a Introduction -- Speech Emotion Recognition: A Review -- Emotion Recognition Using Excitation Source Information -- Emotion Recognition Using Vocal Tract Information -- Emotion Recognition Using Prosodic Information -- Summary and Conclusions -- Linear Prediction Analysis of Speech -- MFCC Features -- Gaussian Mixture Model (GMM). 
520 # # |a  Emotion Recognition Using Speech Features covers emotion-specific features present in speech and�discussion of�suitable models for capturing emotion-specific information for distinguishing different emotions.� The content of this book is important for designing and developing� natural and sophisticated speech systems. Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about using evidence derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Discussion�includes�global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information; use of complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance;� and proposed multi-stage and hybrid models for improving the emotion recognition performance. 
650 # 0 |a Engineering. 
650 # 0 |a Computer science. 
650 # 0 |a Computational linguistics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Computational Linguistics. 
700 1 # |a Koolagudi, Shashidhar G.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461451426 
830 # 0 |a SpringerBriefs in Electrical and Computer Engineering, SpringerBriefs in Speech Technology,  |x 2191-8112 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-5143-3 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)