Persuasive Recommender Systems Conceptual Background and Implications /

Whether users are likely to accept the recommendations provided by a recommender system is of utmost importance to system designers and the marketers who implement them. By conceptualizing the advice seeking and giving relationship as a fundamentally social process, important avenues for understandi...

Full description

Bibliographic Details
Main Authors: Yoo, Kyung-Hyan. (Author), Gretzel, Ulrike. (Author), Zanker, Markus. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Electrical and Computer Engineering,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-4702-3
LEADER 03027nam a22005055i 4500
001 13120
003 DE-He213
005 20130727041254.0
007 cr nn 008mamaa
008 120816s2013 xxu| s |||| 0|eng d
020 # # |a 9781461447023  |9 978-1-4614-4702-3 
024 7 # |a 10.1007/978-1-4614-4702-3  |2 doi 
050 # 4 |a Q334-342 
050 # 4 |a TJ210.2-211.495 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a TJFM1  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Yoo, Kyung-Hyan.  |e author. 
245 1 0 |a Persuasive Recommender Systems  |b Conceptual Background and Implications /  |c by Kyung-Hyan Yoo, Ulrike Gretzel, Markus Zanker.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a VI, 59 p. 9 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 # |a Introduction -- Theoretical Background -- Source Factors -- Message Factors -- Receiver and Context Factors -- Discussion -- Implications for Recommender System Design -- Directions for future research. 
520 # # |a Whether users are likely to accept the recommendations provided by a recommender system is of utmost importance to system designers and the marketers who implement them. By conceptualizing the advice seeking and giving relationship as a fundamentally social process, important avenues for understanding the persuasiveness of recommender systems open up. Specifically, research regarding influential factors in advice seeking relationships, which is abundant in the context of human-human relationships, can provide an important framework for identifying potential influence factors in recommender system context. This book reviews the existing literature on the factors in advice seeking relationships in the context of human-human, human-computer, and human-recommender system interactions. It concludes that many social cues that have been identified as influential in other contexts have yet to be implemented and tested with respect to recommender systems. Implications for recommender system research and design are discussed. 
650 # 0 |a Computer science. 
650 # 0 |a Data mining. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 # |a Gretzel, Ulrike.  |e author. 
700 1 # |a Zanker, Markus.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461447016 
830 # 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-4702-3 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)