Privacy-Preserving Machine Learning for Speech Processing

This thesis discusses the privacy issues in speech-based applications, including�biometric authentication, surveillance, and external speech processing services. Manas A. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identificat...

Full description

Bibliographic Details
Main Author: Pathak, Manas A. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-4639-2
LEADER 03399nam a22005415i 4500
001 13108
003 DE-He213
005 20130727035204.0
007 cr nn 008mamaa
008 121026s2013 xxu| s |||| 0|eng d
020 # # |a 9781461446392  |9 978-1-4614-4639-2 
024 7 # |a 10.1007/978-1-4614-4639-2  |2 doi 
050 # 4 |a TK5102.9 
050 # 4 |a TA1637-1638 
050 # 4 |a TK7882.S65 
072 # 7 |a TTBM  |2 bicssc 
072 # 7 |a UYS  |2 bicssc 
072 # 7 |a TEC008000  |2 bisacsh 
072 # 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 # |a Pathak, Manas A.  |e author. 
245 1 0 |a Privacy-Preserving Machine Learning for Speech Processing  |c by Manas A. Pathak.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 141 p. 21 illus., 13 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 # |a Thesis Overview -- Speech Processing Background -- Privacy Background -- Overview of Speaker Verification with Privacy -- Privacy-Preserving Speaker Verification Using Gaussian Mixture Models -- Privacy-Preserving Speaker Verification as String Comparison -- Overview of Speaker Indentification with Privacy -- Privacy-Preserving Speaker Identification Using Gausian Mixture Models -- Privacy-Preserving Speaker Identification as String Comparison -- Overview of Speech Recognition with Privacy -- Privacy-Preserving Isolated-Word Recognition -- Thesis Conclusion -- Future Work -- Differentially Private Gaussian Mixture Models. 
520 # # |a This thesis discusses the privacy issues in speech-based applications, including�biometric authentication, surveillance, and external speech processing services. Manas A. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identification, and speech recognition. The thesis introduces tools from cryptography and machine learning and current techniques for improving the efficiency and scalability of the presented solutions, as well as experiments with prototype implementations of the solutions for execution time and accuracy on standardized speech datasets. Using the framework proposed� may make it possible for a surveillance agency to listen for a known terrorist, without being able to hear conversation from non-targeted, innocent civilians. 
650 # 0 |a Engineering. 
650 # 0 |a Data structures (Computer science). 
650 # 0 |a Telecommunication. 
650 # 0 |a Production of electric energy or power. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Power Electronics, Electrical Machines and Networks. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461446385 
830 # 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-4639-2 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)