Calculus Without Derivatives

Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization proble...

Full description

Bibliographic Details
Main Author: Penot, Jean-Paul. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:Graduate Texts in Mathematics, 266
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-4538-8
LEADER 02966nam a22005175i 4500
001 13083
003 DE-He213
005 20130727034800.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 # # |a 9781461445388  |9 978-1-4614-4538-8 
024 7 # |a 10.1007/978-1-4614-4538-8  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Penot, Jean-Paul.  |e author. 
245 1 0 |a Calculus Without Derivatives  |c by Jean-Paul Penot.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XX, 524 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Graduate Texts in Mathematics,  |v 266  |x 0072-5285 ; 
505 0 # |a Preface -- 1 Metric and Topological Tools -- 2 Elements of Differential Calculus -- 3 Elements of Convex Analysis -- 4 Elementary and Viscosity Subdifferentials -- 5 Circa-Subdifferentials, Clarke Subdifferentials -- 6 Limiting Subdifferentials -- 7 Graded Subdifferentials, Ioffe Subdifferentials -- References -- Index . 
520 # # |a Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems.� Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories.� In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an�independent course if needed.� The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear�exposition of convex analysis. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Functional analysis. 
650 # 0 |a Systems theory. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Optimization. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Applications of Mathematics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461445371 
830 # 0 |a Graduate Texts in Mathematics,  |v 266  |x 0072-5285 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4614-4538-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)