Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in...

Full description

Bibliographic Details
Main Authors: Aldrich, Chris. (Author), Auret, Lidia. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Series:Advances in Computer Vision and Pattern Recognition,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-5185-2
LEADER 03718nam a22004695i 4500
001 12737
003 DE-He213
005 20130727080212.0
007 cr nn 008mamaa
008 130616s2013 xxk| s |||| 0|eng d
020 # # |a 9781447151852  |9 978-1-4471-5185-2 
024 7 # |a 10.1007/978-1-4471-5185-2  |2 doi 
050 # 4 |a Q334-342 
050 # 4 |a TJ210.2-211.495 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a TJFM1  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Aldrich, Chris.  |e author. 
245 1 0 |a Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods  |c by Chris Aldrich, Lidia Auret.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIX, 374 p. 208 illus., 151 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 # |a Introduction -- Overview of Process Fault Diagnosis -- Artificial Neural Networks -- Statistical Learning Theory and Kernel-Based Methods -- Tree-Based Methods -- Fault Diagnosis in Steady State Process Systems -- Dynamic Process Monitoring -- Process Monitoring Using Multiscale Methods. 
520 # # |a Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: Reviews the application of machine learning to process monitoring and fault diagnosis Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning Describes the use of spectral methods in process fault diagnosis This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning. Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa. 
650 # 0 |a Computer science. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Auret, Lidia.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447151845 
830 # 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-5185-2 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)