Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning

Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the wor...

Full description

Bibliographic Details
Main Authors: Tahirovic, Adnan. (Author), Magnani, Gianantonio. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Series:SpringerBriefs in Electrical and Computer Engineering,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-5049-7
LEADER 03336nam a22004815i 4500
001 12697
003 DE-He213
005 20130727075528.0
007 cr nn 008mamaa
008 130419s2013 xxk| s |||| 0|eng d
020 # # |a 9781447150497  |9 978-1-4471-5049-7 
024 7 # |a 10.1007/978-1-4471-5049-7  |2 doi 
050 # 4 |a TJ212-225 
072 # 7 |a TJFM  |2 bicssc 
072 # 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 # |a Tahirovic, Adnan.  |e author. 
245 1 0 |a Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning  |c by Adnan Tahirovic, Gianantonio Magnani.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 56 p. 20 illus., 17 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 # |a Introduction -- PB/MPC Navigation Planner -- PB/MPC-RT Planner For Rough Terrains -- Conclusion. 
520 # # |a Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: " how to use an MPC optimization framework for the mobile vehicle navigation approach; " how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and �" what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimization step is continuously repeated to take into account new local sensor measurements. These ongoing changes make the path generated rather robust in comparison with techniques that fix the entire path prior to task execution. In addition to researchers working in MPC, engineers interested in vehicle path planning for a number of purposes: rescued mission in hazardous environments; humanitarian demining; agriculture; and even planetary exploration, will find this SpringerBrief to be instructive and helpful. 
650 # 0 |a Engineering. 
650 # 0 |a Astronautics. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Automotive Engineering. 
650 2 4 |a Aerospace Technology and Astronautics. 
700 1 # |a Magnani, Gianantonio.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447150480 
830 # 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-5049-7 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)