Simulation-Based Algorithms for Markov Decision Processes

Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences.� Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dim...

Full description

Bibliographic Details
Main Authors: Chang, Hyeong Soo. (Author), Hu, Jiaqiao. (Author), Fu, Michael C. (Author), Marcus, Steven I. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Edition:2nd ed. 2013.
Series:Communications and Control Engineering,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-5022-0
LEADER 04340nam a22005775i 4500
001 12688
003 DE-He213
005 20130727075410.0
007 cr nn 008mamaa
008 130228s2013 xxk| s |||| 0|eng d
020 # # |a 9781447150220  |9 978-1-4471-5022-0 
024 7 # |a 10.1007/978-1-4471-5022-0  |2 doi 
050 # 4 |a TJ212-225 
072 # 7 |a TJFM  |2 bicssc 
072 # 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 # |a Chang, Hyeong Soo.  |e author. 
245 1 0 |a Simulation-Based Algorithms for Markov Decision Processes  |c by Hyeong Soo Chang, Jiaqiao Hu, Michael C. Fu, Steven I. Marcus.  |h [electronic resource] / 
250 # # |a 2nd ed. 2013. 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 229 p. 29 illus., 1 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Communications and Control Engineering,  |x 0178-5354 
505 0 # |a Markov Decision Processes -- Multi-stage Adaptive Sampling Algorithms -- Population-based Evolutionary Approaches -- Model Reference Adaptive Search -- On-line Control Methods via Simulation -- Game-theoretic Methods via Simulation. 
520 # # |a Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences.� Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable.� In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function.� Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes: . innovative material on MDPs, both in constrained settings and with uncertain transition properties; . game-theoretic method for solving MDPs; . theories for developing roll-out based algorithms; and . details of approximation stochastic annealing, a population-based on-line simulation-based algorithm. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research. The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available. 
650 # 0 |a Engineering. 
650 # 0 |a Computer software. 
650 # 0 |a Systems theory. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Operations research. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Operation Research/Decision Theory. 
700 1 # |a Hu, Jiaqiao.  |e author. 
700 1 # |a Fu, Michael C.  |e author. 
700 1 # |a Marcus, Steven I.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447150213 
830 # 0 |a Communications and Control Engineering,  |x 0178-5354 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-5022-0 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)