Intelligent Energy Demand Forecasting

As industrial, commercial, and residential demands increase and with the rise of privatization and deregulation of the electric energy industry around the world, it is necessary to improve the performance of electric operational management. Intelligent Energy Demand Forecasting offers approaches and...

Full description

Bibliographic Details
Main Author: Hong, Wei-Chiang. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Series:Lecture Notes in Energy, 10
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4968-2
LEADER 02978nam a22005055i 4500
001 12677
003 DE-He213
005 20130727075034.0
007 cr nn 008mamaa
008 130321s2013 xxk| s |||| 0|eng d
020 # # |a 9781447149682  |9 978-1-4471-4968-2 
024 7 # |a 10.1007/978-1-4471-4968-2  |2 doi 
050 # 4 |a HD9502-9502.5 
072 # 7 |a TH  |2 bicssc 
072 # 7 |a KNB  |2 bicssc 
072 # 7 |a BUS070040  |2 bisacsh 
082 0 4 |a 333.79  |2 23 
082 0 4 |a 338.926  |2 23 
100 1 # |a Hong, Wei-Chiang.  |e author. 
245 1 0 |a Intelligent Energy Demand Forecasting  |c by Wei-Chiang Hong.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIII, 189 p. 70 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Energy,  |v 10  |x 2195-1284 ; 
505 0 # |a 1.Introduction -- 2.Modeling for Energy Demand Forecasting -- 3.Evolutionary Algorithms in SVR s Parameters Determination -- 4.Chaos/Cloud Theories to Avoid Trapping into Local Optimum -- 5.Recurrent/Seasonal Mechanism to Improve the Accurate Level of Forecasting. 
520 # # |a As industrial, commercial, and residential demands increase and with the rise of privatization and deregulation of the electric energy industry around the world, it is necessary to improve the performance of electric operational management. Intelligent Energy Demand Forecasting offers approaches and methods to calculate optimal electric energy allocation to reach equilibrium of the supply and demand. � Evolutionary algorithms and intelligent analytical tools to improve energy demand forecasting accuracy are explored and explained in relation to existing methods. To provide clearer picture of how these hybridized evolutionary algorithms and intelligent analytical tools are processed, Intelligent Energy Demand Forecasting emphasizes on improving the drawbacks of existing algorithms. � Written for researchers, postgraduates, and lecturers, Intelligent Energy Demand Forecasting helps to develop the skills and methods�to provide more accurate energy demand forecasting by employing novel hybridized evolutionary algorithms and intelligent analytical tools. 
650 # 0 |a Computer simulation. 
650 # 0 |a Electric engineering. 
650 # 0 |a Engineering economy. 
650 1 4 |a Energy. 
650 2 4 |a Energy Policy, Economics and Management. 
650 2 4 |a Energy Technology. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Energy Economics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447149675 
830 # 0 |a Lecture Notes in Energy,  |v 10  |x 2195-1284 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4968-2 
912 # # |a ZDB-2-ENE 
950 # # |a Energy (Springer-40367)