Statistical Methods for Spoken Dialogue Management

Speech is the most natural mode of communication and yet attempts to build systems which support robust habitable conversations between a human and a machine have so far had only limited success. A key reason is that current systems treat speech input as equivalent to a keyboard or mouse, and behavi...

Full description

Bibliographic Details
Main Author: Thomson, Blaise. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4923-1
LEADER 03532nam a22005775i 4500
001 12667
003 DE-He213
005 20130727074839.0
007 cr nn 008mamaa
008 130109s2013 xxk| s |||| 0|eng d
020 # # |a 9781447149231  |9 978-1-4471-4923-1 
024 7 # |a 10.1007/978-1-4471-4923-1  |2 doi 
050 # 4 |a TK5102.9 
050 # 4 |a TA1637-1638 
050 # 4 |a TK7882.S65 
072 # 7 |a TTBM  |2 bicssc 
072 # 7 |a UYS  |2 bicssc 
072 # 7 |a TEC008000  |2 bisacsh 
072 # 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 # |a Thomson, Blaise.  |e author. 
245 1 0 |a Statistical Methods for Spoken Dialogue Management  |c by Blaise Thomson.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVII, 136 p. 29 illus., 5 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 # |a Dialogue system theory -- Maintaining state -- Maintaining state - optimizations -- Policy design -- Evaluation -- Parameter learning. 
520 # # |a Speech is the most natural mode of communication and yet attempts to build systems which support robust habitable conversations between a human and a machine have so far had only limited success. A key reason is that current systems treat speech input as equivalent to a keyboard or mouse, and behaviour is controlled by predefined scripts that try to anticipate what the user will say and act accordingly. But speech recognisers make many errors and humans are not predictable; the result is systems which are difficult to design and fragile in use. Statistical methods for spoken dialogue management takes a radically different view. It treats dialogue as the problem of inferring a user's intentions based on what is said. The dialogue is modelled as a probabilistic network and the input speech acts are observations that provide evidence for performing Bayesian inference. The result is a system which is much more robust to speech recognition errors and for which a dialogue strategy can be learned automatically using reinforcement learning. The thesis describes both the architecture, the algorithms needed for fast real-time inference over very large networks, model parameter estimation and policy optimisation. This ground-breaking work will be of interest both to practitioners in spoken dialogue systems and to cognitive scientists interested in models of human behaviour. 
650 # 0 |a Engineering. 
650 # 0 |a Computer science. 
650 # 0 |a Psychology, clinical. 
650 # 0 |a Applied psychology. 
650 # 0 |a Consciousness. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Neuropsychology. 
650 2 4 |a Biological Psychology. 
650 2 4 |a Cognitive Psychology. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447149224 
830 # 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4923-1 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)